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FOREWORD

The typical few-of-a-kind nature of NASA systems has made reliability a premium
even on the initial items delivered in a program. Reliability defined and treated
on the basis of percentage of items operating successfully has much less meaning
than when larger sample sizes are available as in military and commerical products.
Reliability thus becomes based more on engineering confidence that the item will work
as intended. The key to reliability is thus good engineering--designing reliability
into the system and engineering to prevent degradation of the designed—in reliability
from fabrication, testing and operation.

The PRACTICAL RELIABILITY series of reports is addressed to the typical engineer
to aid his comprehension of practical problems in engineering for reliability. In
these reports the intent is to present fundamental concepts on a particular subject
in an interesting, mainly narrative form and make the reader aware of practical
problems in applying them. There is little emphasis on describing procedures and
how to implement them. Thus there is liberal use of references for both background
theory and cookbook procedures. The present coverage is limited to five subject areas:

Vol. I. - Parameter Variation Analysis describes the techniques for treating

the effect of system parameters on performance, reliability, and other figures-
of-merit.

Vol. II. - Computation considers the digital computer and where and how it can

be used to aid various reliability tasks.

Vol. TII. - Testing describes the basic approaches to testing and emphasizes

the practical considerations and the applications to reliability.

Vol. IV. - Prediction presents mathematical methods and analysis approaches

for reliability prediction and includes some methods not generally covered
in texts and handbooks.

Vol. V, — Parts reviews the processes and procedures required to obtain and

apply parts which will perform their functions adequately.

These reports were prepared by the Research Triangle Institute, Research Triangle
Park, North Carolina 27709 under NASA Contract NASw-1448. The contract was adminis-
tered under -the technical direction of the Office of Reliability and Quality
Assurance, NASA Headquarters, Washington, D. C. 20546 with Dr. John E. Condon,
Director, as technical contract monitor. The contract effort was performed jointly
by personnel from both the Statistics Research and the Engineering and Environmental
Sciences Divisions. Dr. R. M, Burger was technical director with W. S, Thompson

serving as project leader.
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This report is Vol. II - Computation. It serves in a support role to the other
volumes, particularly to Vol. I - Parameter Variation Analysis and Vol. IV -~ Predic-
tion, by treating the computer techniques for implementing the reliability tasks
developed in the other volumes. R. L. Beadles is the principal author of this report.
A. C. Nelson made major contributions to Secs. 2 and 8; he and J. R. Batts wrote the

computer programs discussed in Sec. 7.
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ABSTRACT

This report places in perspective the role of automatic digital computations in
design for reliability. It is intended for the design engineer, the systems engineef,
and the test engineer as well as the rellability specialist. The degree of detail
with which the various topics are treated is sufficient to enable the engineer not
previously familiar with the subject to properly select and use the methods
presented.

As a fundamental introduction to automatic digital computation, the report first
briefly describes the computer, how it is used, and some of the mathematical problem
types that are amenable to computer solution. The orientation to reliability is then
provided in a brief perspective of reliability tasks and the relation of the computer
to them. Later sections of the report treat specific reliability tasks and explore
the mathematical methods related to them and how the computer is used to implement
them. Some specific computer programs are identified and their uses illustrated by
examples. Parameter variation analysis and reliability prediction are treated in
more detail than others since these areas of application are particularly suited to
computer methods. The last section of the report summarily treats some recent
developments in communicating with the computer which make it more suitable to

engineering and reliability applications.
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1. Introduction

The digital computer has had a significant impact on engineering design and develop-
ment. Because of it, larger and more sophisticated systems have become realities
rather than mere dreams. But with these developments, the achievement of system re~
liability has become more difficult. The designer's task of building in the relia-
bility is a complex one involving extensive analysis and computation, and it is only
natural that the computer be employed to its full capacity here also.

A good, reliable design results from a continual assessment and improvement process.
Performance analysis, testing, failure mode and effects analysis, and reliability pre-
diction are typical, key tasks in this iterative process. As a tool of the designer,
the computer must contribute directly to performance of such tasks.

The purpose of this report is to place in proper perspective the role of automatic
digital computations in design for reliability. It 1s intended for the design engineer,
the systems engineer, and the test engineer as well as the reliability specialist. The
degree of detail with which the various topics are treated is sufficient for enabling
the engineer not previously familiar with the subject to properly select and use the
methods presented,

Of equal importance to an appreciation for what the digital computer can do is
an adequate appreciation for what it cannot do. Consequently, care is taken at
appropriate points to indicate the limitations of the available computer methods and
programs,

As a fundamental introduction to automatic digital computation, Sec. 2 briefly
describes the computer, how it is used, and some of the mathematical problem types
that are so common in many uses of the computer. The orientation specifically to
design reliability applications is provided in Sec. 3 which gives a brief overall
perspective of the engineering tasks and relates the role of the computer to them.

Secs. 4 through 8 separately treat specific design tasks and explore in more
depth the mathematical methods and how the computer is used to implement them. Some
specific computer programs are identified and their uses illustrated by examples.
Parameter variation analysis and reliability prediction are treated in more detail
than others since these areas of application are particularly suited to computer
methods. Sec. 9 briefly summarizes the state—of-the-art in automatic digital com-
putation emphasizing those recent developments in communicating with the computer
which make it more suitable to engineering application.

The computer output can be no better than the model used to obtain it. Before
a computer program can be written to analyze a piece of equipment, a conceptual model

of that piece of equipment must be formulated. Before existing computer programs can



be used intelligently, the models they assume and the relationships of those models
to the equipment which is to be analyzed must be known. Of particular importance is
the knowledge of the parameter ranges over which the models assumed by a computer
program are valid and how these ranges relate to a valid model for the equipment

to be analyzed. A good discussion on the practical aspects of modeling is presented

in Sec. 2.1, Vol., I - Parameter Variation Analysis of this report series.



2, Fundamentals of Digital Computation

The purpose of this section of the report is to treat in as brief a manner as is
consistent with clarity the fundamentals of the digital computer and its use.
2.1 Digital Computer Concepts

A digital computer system is. comprised of two elements which have come to be
called hardware and software. The hardware consists of the physical pieces of equipment,
viz, the central processor, the card and tape readers, the information storage media,
and the printers and plotters. The software consists of all the computer programs
which are available to cause the various pieces of equipment to do useful things.

A simplified block diagram of a stored-program electronic digital computer is
shown in Fig. 2~1. The organizational structure shown in the figure is common to
every modern digital computer although some computers may have more than one memory
unit, arithmetic unit, etc. Although digital computers other than stored-program
electronic digital computers are of historical interest they are not of interest
in modern engineering. In this report when we use the word computer we shall mean

stored-program electronic digital computer.

The function of a computer is to take data via the input unit from the external
world, perform calculations on it as specified by the program stored in the memory
unit, and supply the results via the output unit to the external world. 1In a typical
installation the input unit is a punched card reader which reads the information on
the cards into the memory unit under control of the control unit. The typical output

unit is the line printer, which produces a printed copy of the results of the calculations.

Control

A——P Unit
Input |- >

Unit
)

| Arithmetic Memory
Unit ‘—'ﬁ—’ Unit

Output
Unit -

Figure 2-1. Basic Computer Organization



Computers are widely used both in real-time operation and in off-line operation.
Although the terms real-time and off-line are relative to the application, the meaning-
ful distinction usually is that in the real-time application, the input data must be
processed rapidly and an output produced so that some kind of response can be quickly
initiated. An example of the real-time application of the digital computer is in
conjunction with a radar installation. There the input data comes from the radar and
must be processed sufficiently rapidly to compute, for example, guidance commands for
a missile launched to intercept an attacking aircraft. We will not discuss in this
report the use of digital computers in such real-time applications.

Referring again to Fig. 2-1 we consider briefly the function of each of the blocks
shown., First, the memory unit sServes as storage for (1) the program which is to be
executed, (2) the input data until it is needed for processing, (3) intermediate results
during the execution of the program, and (4) the final results until they are ready
for output. The memory unit typically is a principal element of the computer; the
cost and speed of the modern digital computer are largely governed by the cost and
speed of the memory. It is not uncommon for the cost of the memory to approach
the cost of all the other units combined.

The memory contents are stored in the form of binary digits (bits) which are
grouped into blocks of sufficient size for the number range and precision requirements
for which the computer is designed. Such a block of binary digits is called a memory
word. In computers in common use today the memory word varies from 12 bits up to 60
bits, which corresponds to a decimal number range of 4000 to 1018. The number of words
that a computer memory may store also varies widely and ranges from 1000 words up to
106 or more words.

%
Associated with the memory unit are two registers . These are the memory address

register and the memory data register. When it is desired to store a number in memory

or retrieve it from memory, it is necessary to give the location of the particular
memory word desired. The memory address register is used to designate the address,
i.e. the location, of the word in memory. When the command is given by the control
unit to store or retrieve a word from memory, the memory address register is used to
designate the address. There are as many unique addresses, i. e. locations at which
a number can be stored, in the memory as the number of words which the memory is
capable of storing.

The memory data register is used as an intermediate storage when a word is going

from the arithmetic unit or the input unit to the memory. To store a word in memory,

*
A register is a temporary storage device. It typically can store one memory
word,
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the word is placed into the memory data register, and the address at which it is to

be stored is placed into the memory address register. Then the store command generated
by the control unit causes the word to be stored at the specified address. When a
data word is to be retrieved from memory, the address of the word is again placed into
the memory address register, and the fetch command from the control unit causes the
word to be transferred from the specified address in the memory to the memory data
register.

The arithmetic unit performs an arithmetic (or logic) operation as specified by

the program between a word contained in a register in the arithmetic unit called the
accumulator and a word fetched from memory into the memory data register. This des-

cription holds for the single address computer. The term single address means simply

that a single program step (which also is stored as a word in memory but is called

an instruction word) specifies the address of only one data word in memory. The second

word to be used in an operation is contained in the accumulator register in the arith-
metic unit. Althought some computers specify more than one address in one instruction
word, the single address computer organization is the most widely used.

In the single address computer, the accumulator register contains one operand*
for an operation, with the other operand being first in memory and later in the
memory data register. The result of an operation usually ends up in the accumulator.
Data words can be fetched from memory to the accumulator or stored from the accumulator
into the memory. Except when the computer instruction specifically calls for it, the
contents of the accumulator are not disturbed by an operation.

The control unit is the logic complex which determines which operation is to be
performed at what time and what sequence of elementary logic steps accomplishes the

operation. The control unit contains two very important registers--the program register

(also called the instruction counter) and the instruction register.

The program stored in the computer memory unit consists of a sequence of instructions
which the computer is to perform. The program is stored in the memory in the proper
sequence: the first instruction is stored in some location n, the second stored in

location n+l, etc. The function of the program register is to keep track of the loca-

tion from which the next instruction is to be fetched; it does this by counting the
instructions as they are performed. Unless specifically requested to do so by a specific
instruction, the program will proceed in sequence by picking up its instructions from

successive memory addresses.

%
An operand is any single-word quantity which is operated upon by the computer.



The function of the imstruction register is to temporarily store each instruction

to enable the control unit to decode it and initiate and properly time the sequence
of elementary logic steps which implements the instruction. It is a fundamental fact
that the memory contains both the instructions tobe executed, (i.e. the program) and
the data on which the instructions are to operate.

The two kinds of stored words (instructions and data) are treated in two entirely
different ways. An instruction is transferred to the instruction register where it
is examined by the control unit to determine:

(1) what operation (add, subtract, logic, etc.) is required,

(2) where the second operand is located, i.e., the address of the second

operand, and

(3) where the result of the operation should be placed.
If, as is usually the case, one of the operands is coantained in the memory, then this
operand address is contained in the instruction word located in the instruction register.
This address is furnished to the memory address register at the correct time as specified
by the control unit. The result of the operation usually goes into the accumulator.

The input unit and output unit have associated with them a data register and an

address register analogous to the memory address register and memory data register

of the memory unit. Data coming from an external device is placed into the input-—

output (T/0)data register and later transferred into the accumulator for use inside
the computer. Data going to an external device is transferred from the accumulator
to the I/0 data register from which it is removed by the I/0 device. Since typically
several input-output devices are connected to the computer, input-output addresses
must be specified to identify which I/0 device is requested. The function of the
I/0 address register is to designate the address of the I/0 device; the address of
the I/0 device is nothing more than a number which it has been given to uniquely
identify it.

A computer can perform only the operations which have been built into it. The

list of operations which a computer can perform is called the instruction repertoiré

of the computer. Any program which can be executed by a computer is made up of only
those instructions contained in that computer's instruction repertoiré.

An instruction is a step in a program but we wish to indicate in detail what
comprises an instruction. For purposes of discussion the following description of
an instruction is referenced to a single address computer. A computer instruction is
made up of three basic parts:

The operation code (op code) is that part of an instruction which specifies to

the control unit which operation is to be performed (add, subtract, transfer data

to or from memory, etc.)



The instruction modifier is a group of bits which further specifies how the instruc-

tion is to be performed. For example, the add operation ordinarily results in the

sum being placed in the accumulator only. A modifier to the add op code might specify

that the result of the add operation also be placed into a memory location.

The address of the second operand is the third basic part of an instruction. The
address is simply the number of the memory location which contains the data to be
operated on as specified by the op code.

The computer has two characteristics which make it an exceedingly powerful aid
to problem solving. First, the computer can perform operations (albeit simple)
exceedingly rapidly. It is not uncommon for a large-scale modern computer to be able
to perform, for example, one million addition operations in one second*. Fundamental
to the ability to do simple operations exceedingly fast is the ability to obtain the
data at an adequately rapid rate. The availability of the data at such a rate implies
that both the instructions for operating on the data and the data itself must be
stored in the computer memory.

The second characteristic of fundamental importance in the computer is its
ability to perform the same sequence of operations an arbitrary number of times, ex~
cept that the sequence is performed each time on a different set of data--this is the
ability of the computer to modify its own program. It might appear that to instruct
a computer to perform the operations necessary to add by pairs two tables of 100
numbers each would require 200 or more instructions. On the contrary, it is a simple
matter to put instructions in the program which modify the instruction addresses in
a way to step through the pairs of numbers in the tables and make the total number
of required instructions something like ten.

2.2 Computer Programming Languages

In the final analysis a digital computer can only recognize binary patterns. Thus
there are several programs between the computer programmer using FORTRAN (or another
high-level programming language) and the actual execution by the computer of the
operations requested by the programmer in his FORTRAN program. Three levels of

computer languages are in wide use today: assembly languages, procedure-oriented

languages such as FORTRAN, and problem—oriented languages such as the input language

for automatic circuit analysis programs.

*

The response time of the logic devices internal to a modern computer is a few
nanoseconds, which is an interesting contrast to the few milliseconds response time
of the neurons of the computer user.



*
The assembly language 1s the first level of computer language removed from the

binary patterns which the computer directly recognizes. Consider the add operation.
The binary pattern for the add operation(which is the add op code)for a particular
computer might be 1000. Before the computer can actually execute an add operation,

it must have in the op code portion of its instruction register the binary pattern
1000. It also must have, in the address field of the instruction word, the binary
pattern which gives the location of the memory word containing the data which is to

be added to the contents of the accumulator. The assembly language enables the pro-
grammer to use a suggestive sequence of letters called an instruction mnemonic, for
example ADD in the case of the add operation, to specify that an addition is to be
performed. Before this addition operation called for by the assembly language pro-
gram can be performed in the computer, it must be processed by another computer program--
called the assembler--which has the ability to interpret the letters ADD as the op code
1000 for the add operation. If we wish to add the numbers X and Y, the availability

of the assembly language enables us to write a sequence of instructions which loads

the accumulator with X, adds Y, and stores the result at a desired location Z. Such

a sequence is

LDA X
ADD Y
STO Z

where LDA, ADD, and STO are respectively the mnemonics for loading the accumulator

from the memory, adding to the accumulator, and storing the contents of the accumulator
in the memory. Each of the letters X, Y, and Z represents the symbolic address of a
memory word. The assembler in addition to converting the instruction mnemonics to their
binary equivalents, allocates memory wovds and converts each symbolic address used

in an assembly language program to a fixed binary memory address. Thus assembly
language programming contrasts to having to write the binary patterns for each computer
instruction and to allocate memory locations by writing a binary memory address for

each data word used in the program.

%%
The procedure-oriented language, of which FORTRAN is the best known and most

widely used example, effectively removes the programmer one level further from the
tedious task of programming the computer with binary patterns. Thus, whereas three

assembly language instructions were required to specify the addition of X and Y and

*Assembly language is also called machine language, since the details of an assembly
language are highly dependent on the details of the specific machine(the specific computer)
on which it is used. Originally, machine language meant the binary patterns directly
recognized by a computer.

%k
FORTRAN is a contraction of "formula translation".



store the result in the memory at location Z, the FORTRAN statement for accomplishing
this would be simply Z = X + Y. The program which processes the FORTRAN statement
(called the FORTRAN compiler) would produce the same sequence of binary patterns that
the assembly language instructions produce. Whereas in writing in assembly language

one statement must be written for each instruction to be executed, a FORTRAN statement
(and in general any procedure-oriented language statement) will produce several computer
instructions, typically four or five.

An advantage of procedure-oriented languages which is probably more important
than their ease of use by the programmer is that a procedure-oriented language program
is nearly machine independent, in dramatic contrast to the program written in assembly
language. Thus a program which is written in FORTRAN can be interpreted, via the
FORTRAN compiler of any computer which has one, and then executed on that computer,
with only minor program changes between different computers. A specific computer
almost never stays in a particular installation for more than a few years. The use
of procedure-oriented language programming is the only effective way to prevent losing
the large investment in programming time and checked-out programs for the old computer
when the new computer is installed.

The problem-oriented language is the newest and in many ways the most powerful

computer language. A single statement in a problem-oriented language might result

in the execution of up to several thousand computer instructions. Problem-oriented
languages are discussed in later sections of the report. In essence they consist of
the input languages to special programs written to aid in.specific problem areas, e.g.,
problems in network analysis.

In the final analysis, the computer can do no more and no less than precisely
what it is instructed to do via the program. Given adequately clever people preparing
and using the computer programs, the computer can indeed do some very impressive things.
As an aid to design for reliability, the computer enables equipment designers to con-
duct many more and more thorough analyses of their designs than would be possible by
any combination of hand calculation and laboratory experimentation. However, it is
up to the computer users to examine the output from the programs they are using, to
interpret the computer results, and themselves to make the corrections and design
modifications which they discover via computer analysis. The computer does not by
any stretch of the imagination remove the need for good engineering and clear thinking
in the development and design of reliable equipment.

2.3 Basic Mathematical Problems that Can Be Solved by a Computer

Problem solving is an essential part of engineering design. Some of the problems

are very simple from a computational standpoint, requiring only a slide rule, a

pencil, and a piece of paper, while other problems require a team of engineers working



many days or perhaps years. The latter problems were attacked by approximations

based on simplifying assumptions when digital computers were not available. However,
it is now practical to evaluate the adequacy of such assumptions and delve into system
analysis problems which would have been impractical only a few years ago.

Solving a particular engineering problem on a computer usually requires the use
of several basic mathematical techniques. For example, suppose that we wish to obtain
the minimum value of a particular known function f(x) on a certain interval [a,b].

In some cases the derivative function can be written without difficulty, the resulting
equation solved for the zeros, and the -solutions tested to determine which value of
the independent variable yields the minimum value of the response or performance
variable. However, in some problems the writing of the derivative takes considerable
time and its evaluation a great deal longer time than the evaluation of the original
function, and often the equation obtained by equating the derivative to zero is hard
to solve., Hence a computer is used to aid in the analysis.

Again there are many avenues of attack on the problem. One approach is to
evaluate the function f(x) at a single value of x within the given interval and
then select another x value at some predetermined distance from the first point and
compare the two values., If the value of the function at the second point is less than
at the first point, take it as a new reference point and proceed to a third point, etc.
In such a process the interval of step size between successive x's must be decreased
in a systematic manner when no improvement results from increasing or decreasing x
by the prescribed step size. Such a procedure will ultimately lead to an adequate
solution of a problem of a local minimum,and in the case of a convex function* on the

interval an absolute minimum,as seen in the figure below.

y=£(x)

<

Absolute
Minimum

ph-————_——

\J
"

Figure 2-=2. Minima of a Function f(x)

*
Linear interpolation never undersstimates the real value of a convex function at
the interpolated point, For a mathematical definition of a convex function, see Ref. 2.2.
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Another attack on the problem is to select three points on the interval [a,b],
fit the corresponding y's by parabola, and estimate the location of the vertex. Then,
select three new points in the neighborhood of this vertex and repeat the above;
eventually the location of the local minimum point is determined to within the desired
degree of precision. This approach requires the evaluation of the function at three
points and the solution of a set of three linear simultaneous equations for each
iteration. It also requires the provision of a logical procedure for altering the
step size as the iterations converge toward the solution.

If the function is convex and only one independent variable is involved, there
is a near optimum procedure for finding the minimum using the properties of the
Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, ..., where each number in the sequence

is obtained by adding the two previous numbers, that is

a =a + a (2-1)

n+1 n-1 °

This procedure is considered in Ref. 2-2 under the basic problems of optimization.
Also see Ref. 2-3 for a mathematical treatment of this subject.

In the following sections are presented some of the basic problem types, some
of the approaches to solution, and the relation of these basic problems to typical
engineering problems via particular computer programs. This approach was selected
to avoid some of the redundancy which would occur as a result of treating problems
in electronics, or propulsion, or structures as separate problems when in fact they
may be all of the same basic problem area.

Function Evaluation

The first problem type is one of evaluating a function of one or several variables

defined by

y = f(xl, Xps =oes xn)
= £
where x = (xl, e xn) and Xy is the i-th variable. For simple functions a computer

is not needed to solve for y for given values of the x5 however, if the operation

is to be repeated frequently or if the function is complex the use of a computer is
‘often justified. The display of the output in a table or graph form is important from
the user standpoint. If the function is an important one a table of values for future
use can be prepared for different values of x. It is obvious that a computer can be
used to obtain reams of paper containing numerical values of y for various combinations
of x5 i=1l, ..., n. However, the objective of the problem and the uses to be made

of the results should be thoroughly considered prior to computation. There is no

11



need to tabulate a function which can be computed almost as readily by hand as one
can locate the table and then look it up. Although this statement seems obvious it
is possible to locate examples of such functions tabulated in the literature. Also,
the selection of the values of the X i=1, ..., n at which to compute the y's is
an important aspect of the problem.

In engineering applications the performance or some figure-of-merit (FOM) of an
equipment can often be expressed as a function of the characteristics of its parts
and the inputs, environments, loads, etc. Thus the FOM may be obtained for various
values of the variables which influence it. Computation of static and dynamic responses
with circuit and structural equations are typical examples in engineering.

Functional Equation

Next consider the inverse problem of solving for x givem y, i. e., if
¥, = f®

determine x such that f(x) = Yo» where the solution(s) will be denoted by X - For
example, we may have an algebraic equation in one variable x and wish to solve for
the values of x at which the curve corresponding to the equation y = f£(x) crosses

or intersects the x axis (line y = 0). We may wish to obtain the extreme points
(maxima, minima, points of zero derivative) for f(x) when the derivative function
f'(x) can be readily obtained. 1In general the problem may require the use of an
iteration technique, such as the Newton-Raphson method* of solving an equation by
using the construction of successive tangents to the curve at points approaching the
solution,

A typical engineering example of the above problem is to find the parameter values
yielding a given level of performance. It is possible to obtain contours of equal
performance values of the set of all values of the independent variables corresponding
toy = Ygr Yqo +os Vg Such a set of contours is indicated in Fig. 2-3. Such
techniques can be helpful in determining the operating conditions yielding the desired
performance. The above technique becomes very helpful when two or more dependent
or performance variables are being considered. For example, in Fig. 2-4 two variables
are shown and the region of operation defined by the set of the X5 i=1, 2, for which
V1 2 30, Yo £ 20. The shaded region provides a region of operation which satisfies
the given constraints. Further discussion of such an approach and practical problems

associated with it are in Vol. I - Parameter Variation Analysis of this series.

*
There are numerous texts on standard numerical methods. Refs.2-4 and 2-5 are
good starting points.

12



]
=
o

Figure 2-3. Typical Performance Contours
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Figure 2-4. Region of Desired Performance
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If a system of equations is involved the problem may have a single solution or
a multiple solution depending on the degree of the equations, the number of equations
relative to the number of unknowns, etc. Many problems in real world applications
result in a system of equations to be solved for the value or values of the unknown
variables which satisfy specified conditions. Some of these problems will be considered
later.

Functional Approximation

Another important problem in computer application is the use of functional
approximations to functions which cannot be expressed in a closed form,e. g., some
indefinite integrals or the sum of an infinite series. For example, the approximations
to sin x and e* can be in the form of a Taylor series or orthogonal polynomials such
as Chebyshev, Legendre, and Hermitian polynomials. 1In many applications a finite
Taylor series approximation is to be used. On the other hand, extremely accurate
approximations are sometimes needed, such as for the cumulative probability integral
of the Gaussian distribution. Rational integral functions are often used in approximating
such curves. See Ref.2-5 for examples of approximations to a variety of functions.

One useful application in engineering problems is reducing a complex function to
a linear or , when necessary, to a second degree approximation. Such an approach is
useful in deriving the properties of the distribution of a performance variable y
in terms of the characteristics of the distributions of the independent variables.

It is also applied often in constructing contours and performing sensitivity analyses.
A linear approximation is most often sufficient over the region of interest.

This problem type leads logically into the problem area of curve fitting which

is discussed below. The two problems are separated here because the first problem

type deals with a known model defined explicitly such as
y=¢€

or

or only implicitly such as
f(t, y, dy/dt,...) = 0.

The curve fitting problem on the other hand treats a given model form with unknown

constants to be determined from given data.
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Curve Fitting
Suppose that instead of being given a function as suggested above one 1is given

a set of values ¥y and the corresponding Xy or x; in the case of several independent
variables. For one independent variable and one dependent variable, a curve may be
fitted to the data freehand. If however we have some knowledge concerning the under-
lying mechanism (a model form) and wish to estimate certain constants or parameters
of the model, a more appropriate procedure would be to estimate the parameters by a
mathematical procedure such as the method of least squares. Even when the model form
is not known, there is often considerable advantage in fitting the curve by a mathe-
matical interpolation or a graduation formula such as a linear or second degree
function in x or possibly in 1/x depending on the nature of the given data. Such a
prediction equation is satisfactory only in the region of the given data unless
theoretical knowledge is available to allow correct extrapolation beyond the region
of experimental results given by the data.

Another closely related technique for fitting a curve is smoothing the data.
Smoothing the data is based on the fitting of polynomials to a set of successive data
points and calculating the '"smoothed" points. For example, suppose that 2t + 1
successive equally-spaced points, (t = 1,2,...) are selected and a polynomial of

degree three fitted to these points. Then the smoothed wvalue of y is given by

*_1 - -
v, =35 (-3y, + 12y, + 17y, + 12y, - 3y,) (2-2)

where Vo3 Ypsrers ¥, are five consecutive values of y.

The least squares technique has the most useful application when fitting a curve
to a set of observed (experimental) data points. Suppose that one hypothesizes
that the mean value of the performance variable y of given x is a linear function of

certain functions fi(g) of the independent variables x i=1, ...,n. The expected

i’
value of y is

p
E{y|x} =8 + ) By £,(0). (2-3)
i=1
or
n = BO + ZB]'. fi@)’

where n denotes the mean value of y for given values of x. For example, if fi(§ = Xy

and p = n, then

n o= B+ ByXqs-es + B X (2-4)
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is a linear function of the X, . If one the other hand fi(§) = l/xi and p = n, then

n o= B, + Bl/x1 + ...+ lﬂn/xIl (2-5)

is not a linear functiomn of the xi's. However, it is a linear function of the B's
which are to be estimated from the given data by the method of least squares. Thus
the estimates bo’ bl""’ bP of 81, ees Bp are given by the values of the B's which

minimize the sum of square of deviations

s = Iy - Bo - ZBi fi(g)}z. (2-6)

Certain assumptions are made in this solution, namely that the y; = fi(g) are distri-
buted about the corresponding means n, = Bo + ZBi fi(z) with constant variance and
that they are independent observations. The solution to the least squares problem
is obtained by solving a set of p + 1 equations in p + 1 unknowns, often referred to
as normal equations in the literature [Ref. 2-4].

In many physical problems the model form cannot be expressed as simply as abowve
(i.e. as a linear function in the unknown constants Bi, i=0, 1, ..., p), but is non-
linear, such as

_le

y = Bo(l - e ).
In such examples iterative procedures must be used to solve for the best estimates of
the constants in the least squares sense. For example, see Ref. 2-6 concerning two
basic approaches. Computer programs have been written to perform the iteration. See
Ref, 2-7 for example. This problem requires the use of a general technique for
solving a system of nonlinear equations, e.g., the Newton-Raphson technique or one
of the search techniques which have been widely applied for such problems.

Although the least squares curve-fitting method is most frequently used, it is
not always the most desirable, 1In some situations one wishes to fit the data by a
curve which minimizes the greatest distance between the fitted curve and the given
data, whereas the least squares method minimizes the sum of squares of the distances.
For example, if the data are precise in the sense that they are results of some mathe-
matical calculation (such as the solutions of a differential equation at a particular
value of the independent variable) it may be desirable to relate the solution, which
may be a performance measure of interest, to the values of certain design parameters
in order to reduce the need for solving the differential equations many times.

As an example, in the design of nuclear reactors a problem of importance to

the design engineer is the hot spot in sandwich-type fuel elements which contain a
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uranium alloy as the center section and another alloy for the external plates. The
differential equations used in solving for the maximum temperature are quite involved
and require considerable computing time on a modern high-speed computer. Consequently,
it is desirable to make use of solutions of these equations for several parameters
to infer what the solution is for other parameter values. The solutions to the equa-
tions are exact subject to discrepancy in the model. Thus it 1s not as meaningful
in this case but to minimize the sum of squares of deviations between the fitted
curve and the given data as it is to minimize the largest absolute deviation between
the two. A linear programming technique can be used to solve the problem for linear
approximations.
Optimization

The basic problem is:given y = f(x), x = (xl,xz,...,xn) in some region R, to
determine the value of x that minimizes or maximizes y.

This is a common problem in analysis; the optimum solution is desired, where
optimum is defined by means of an objective function such as cost, reliability, or

performance as a function of system design parameters. In general the x i=1,...,

i?
n are not only confined to some region, but particular functions of the X, must

satisfy given design constraints. The form of the objective function and that of

the constraint function dictate the type of procedure(s) that apply. For example,

if the objective and the constraint functions are both linear, a linear programming

(LP) approach can be made. If the objective function is quadratic (nonlinear), then

a quadratic (nonlinear) programming technique will be used in determining the optimum
parameter values. If there are no constraints, such as in the case of the least

squares equations for nonlinear models, search techniques or gradient techniques are
used in most situations. See Ref. 2-2 for a further discussion of these procedures.

The following table contains a listing of optimization programs categorized by
the mathematical problem area such as described above. Additional literature references
concerning the particular programs are noted after the program identification number.
The prefix to the number when present indicates the machine configuration. Because
a large number of LP programs are available no attempt is made to give a complete
listing of these. However, for the remaining categories of programs the listing should
be reasonably complete with the exception of programs for dynamic programming and the
analytical techniques of differential calculus and calculus of variationms.

In the case of dynamic programming it is only possible to write programs which
solve a particular type or class of problem, such as a reliability optimization problem.
If the problem can be solved by methods of differential calculus, then the analytical
problem becomes one of solving the resulting system of equations for the location of

the stationary points and hence of testing the nature of the function or the matrix
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Table 2-1

Listing of Optimization Programs by Mathematical Programming Problems

OBJECTIVE FUNCTION

CONSTRAINT//////, 1) (2) (3 (4)
FUNCTION Linear Quadratic Separable(Stagewise) Non-linear-Not (2) or (3)
Linear Linear Quadratic Dynamic Non-linear
Programming Programming Programming Programming
. Deterministic 7040-H1 3326QPF4 | Many programs cited | 7040-H9 IBM 0007 [Ref.2-8]
. Integer in the literature 7090-H9 IBM 0021 [Ref.2-8]
. Stochastic for specific prob- | 7090-H2 3430GPGO [Ref.2-8]
————————— lems; see Refs. 7040-H2 3429GP40 [Ref.2-8)
7040-C0-12X [Ref.2-8] 2-8 through 2-12. 7040-H2 3189S0RT [Refs.2-8
7094~K1 3206M3 [Ref.2-8] and 2-9]
7040-H1 3384LSOB [Ref.2-8] 7090-H1 3199NLP [Ref.2-8]
3600-15.2,001 [Ref.2-8]
LIP 1
SHARE (SDA3335) [Ref.2-10]
1p01,2,3
SHARE (1192,1191 and 1190)
[Ref.2-10]

Nonlinear | Non-Linear Calculus of Variations
Programming
7094-K1 3206M3 [Ref.2-8]
(See column (4) - Nonlinear
Programming Problems --
Calculus of Variations).

No Differential Search Techniques

. Calculus
Constraint

7090-HO 3214MINS [Ref.2-8]
0709-C3 3376SEAR [Ref.2-8]
MINI [Ref.2-11]

BOTM [Ref.2-11]
FIBONACCIAN [Ref.2-7]
DIRECT SEARCH [Ref.2-7]
ROSENBROCK [Ref.2-12]
SCOOP [Ref.2-~11]
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_Differentiation

of second derivatives at each of the extremal points to determine whether it is a maximum,
a minimum, an inflection, or a saddle point, These calculations can all be performed
numerically if desired. No programs are identified in this area. Similar treatment
of the method of Lagrangian multipliers is possible for some problems with constraints.
However, if a linear, quadratic,or nonlinear programming technique is appiicable, the
method of Lagrangian multipliers is probably not going to be efficient.

Ref. 2-2 contains summaries of several publications in which one or more of the

optimization procedures are applied.

Simulation

The problem statement is: given a process or system which yields an output y
for given inputs x, characterize the output y. One approach to describing an output y
is to simulate the process by generating the inputs Xys eees X by an appropriate pro-
cedure, such as the use of a random number generator, and then use a system model to
obtain the output. This procedure is repeated a sufficient number of times to
characterize the output to the degree of precision desired.

A great variety of problems can be solved by simulation. For example, if y = £(x)
is a complex function of random variables is ores X » then the distribution of the
random variable y can be estimated by performing a sufficient number of Monte Carlo
runs. Such a procedure is often used.in reliability and parameter variation analysis
as a means of estimating the probability that the performance measure of interest
will fall inside certain limits; such Monte Carlo techniques are discussed later in
the report.

Simulation can be applied to random walk problems, such as that of a neutron
particle in a nuclear reactor, to the behavior of a sequential test procedure given
certain assumptions concerning the underlying distributions, or to diffusion problems.
An industrial process can be simulated for the purpose of improving the efficiency.
Repair and service time (queueing) problems are examples which may require the use
of simulation techniques. Of course many of the above problems, i1f sufficiently
simple, can be treated analytically and the use of a Monte Carlo procedure is wasteful.
In many real world applications, however, the complexity is such that the use of approxi-~

mations or a simulation is required.

22 a2
i s T3 etc.

The problem is: given y = f(x), determine %1—
3 9x
i

x, ’ 9x.9x
i i
This problem can be treated by the appropriate combination of the techniques given
above. However, it is a basic problem of frequent application and uses the techniques
of difference calculus. For example, one obvious procedure for obtaining the first

derivative of a given function at point X is to evaluate the function at three
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equally spaced points X, s Xp 5 Xy and average the corresponding slopes of the secant
lines connecting the points as shown in the following figure. Thus the estimate

of the derivative is

dy _ 1 [yl_yo L2 1

ax ~ 2 g 51 = 7n vy~ ¥l (2-7)

This is a central difference formula; clearly many other such formulas can be obtained.
Similarly one can obtain a formula for a mixed or pure second partial derivative. For
example, Ref. 2-13 contains many such formulas. It is worth noting that numerical
differentiation, interpolation from a set of tables, and the numerical quadrature
formulas used in the construction of tables or for looking up values in tables have
much in common.

-The problem of differentiation can occur in many ways in engineering analysis
problems, We may wish to perform a sensitivity analysis in which the relative changes
in the performance measures are needed corresponding to changes in each of the inde-
pendent variables; we may be searching for an optimum and require the gradient of the
function f(x); or we may wish to expand a function in a Taylor series to obtain a
simple approximating function.

Integration, Definite and Indefinite

X
The problem is: given the function f(x), determine F(x) = f f(u)du.
a

Since integration is the inverse of differentiation, the same basic techniques,

again starting with the difference equations, are required. For example, the well

Figure 2-5. Estimation of the Derivative, dy/dx
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known trapezoidal rule is used to obtain a definite integral of f(x) over an interval

[a,b] as shown in Fig. 2-6.

e

? IZI E 2
f(x)dx A, = 5(; 4 + y)h
b S

-l% [yo + Zyl + ... + Zyn_l + yn] (2-8)
More precise formulas for the definite integral can be obtained by using second
degree approximations (Simpson's rule) and higher degree polynomical approximations.
Ref., 2-4 contains several such formulas.
In the case of an indefinite integral and differential equations, it is typical
to use the difference formulas and Taylor series approximations to estimate the inte-
gral function step by step over a given interval starting with known values given

by boundary conditions.

<

!
|
|
|
|
|
|
I
|
1

Figure 2-6., Numerical Integration
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3. Reliability and the Computer —— A Perspective

The scope of activity included under the heading of reliability generally can be
subdivided into two areas: management and control versus assessment and assurance.
The former of these typically includes tasks such as planning, reporting, training,
etc. The role of the computer in this area is mainly one of bookkeeping and informa-
tion storage and retrieval. These uses of computers are not treated in this report.

As a real aid to reliability, the computer's most vital function is in performing
complex data processing and analysis operations which prevail mostly in the assessment
and assurance activities. These roles are the ones emphasized in this report. The
major tasks in which computers can aid reliability with these functions are identified
below, then surveyed for a perspective on the role that computers can play in imple-
menting them.

Failure modes and effects analyses (FMEA) are procedures for considering modes

of operation of components (such as a short of a resistor or premature operation
of a transmitter) and the effects these modes have on system operation. Parameter

variation analyses (PVA) treat variations in performance using models (either mathe-

matical or physical) which relate performance to characteristics of the components

and operating conditions that cause the performance to vary. Part application analyses

consider individually the parts and components of the system for a comparison of

operating conditions to rated capabilities. Reliability prediction is concerned with

the probability of successful operation of an equipment using models that relate system

success probabilities of events associated with components and operating conditions;

it can include probabilities related to both life and performance. Testing is con-

cerned with all effects introduced above; it alone can be a means to an end or serve

both a supplementary and complementary role to the analyses by supplying information

to support the formulation of models, data inputs to them, and checks of their validity.
The first four of these are analysis tasks 1nitiated early in design. A

perspective for their coordinated implementation for treating reliability problems

in design and development is illustrated in Fig. 3-1, which also includes a general

indication of computer utility for performing these tasks. Testing also often employs

computer methods and as noted earlier, this task serves as support to the analyses.

The proposed design and mission define the problem to be analyzed. The analyses pro-

vide the output information for design improvement and assurance. Improvement results

through a feedback process whereby the design or mission is modified as required. Such

modifications require tradeoffs between reliability and other requirements of the

system (cost, maintainability, etc.) before being made.

In brief, the overall objectives of the reliability analyses are:
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(1) identifying and removing possible causes of failure,

(2) balancing safety (design) margins or apportioning tolerances, and

(3) obtaining numerical assessments of reliability.
None of the defined reliability tasks is capable of achieving these objectives by
itself. As illustrated, the tasks are strongly interrelated; it is through their
coordinated application and the combined use of their results that maximum benefit
is derived for reliability. The computer can aid in performing each of the individual
tasks; for example, it usually should be used for PVA and often should be for relia-
bility prediction. Each of the tasks and the relevance of computer methods to im-
plementing each are discussed below.

Failure modes and effects analysis serves the purpose of revealing what can

happen to the system. By considering the likelihood and the criticality of the possi-
ble modes of system behavior, it allows direction of effort in the other reliability
tasks. It defines specific modes of behavior for performance variation studies; it
identifies critical areas to be emphasized in part application analyses; it designates
failed states to be included in reliability predictions. Because of its value in
directing other effort, a failure modes and effects analysis should be initiated

early in the design program. A computer is seldom used in identifying failure modes;
it is used in investigating failure effects as discussed in Sec. 6 of this report.

Parameter variation analysis is concerned with the assurance that performance

is acceptable. Whereas reliability prediction, failure modes and effects analysis, and
part application analysis are usually formal tasks in system contractor activities
parameter variation analysis has been neglected due to limited understanding of
the available techniques for treating performance variability,

As described in Sec. 4 a number of analytical techniques have been assembled
and tested, and a flexible PVA program has been written. 1In this program, mathematical
or physical models are used to relate performance attributes to component and interface
characteristics. Probabilistic techniques such as propagation of moments and Monte
Carlo simulation are used to estimate probabilities or distributions of performance,
Various end-limit techniques provide worst-case performance values and parameter sen-
sitivities. Sources of variation are identified and relative contributions of com-
ponent variation can be determined. Parameter variation analyses yield directly
useful design information and, as illustrated in Fig. 3-1, provide inputs to the
other tasks. These include, for example, operating conditions for components used
in application analyses and performance estimates to be included in reliability
predictions.

Part application analysis determines whether components are properly applied.

For example, thermal and electrical loads on parts are used for appropriate adjustment
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of failure rate estimates, and parts with loads exceeding design specifications are
appropriately respecified or the design changed to reduce these loads. Computers
are readily used to make a part application analysis; such an analysis is frequently
conducted as a part of a larger analysis. For example, it is easy when performing

a circuit analysis to check actual voltage, current, and power against rated values
for each component in the circuit, and provisions for doing this are incorporated

in some circuit analysis programs. Further discussion is given in Sec. 5.

Reliability predictions are based on logic relationships expressing success or

failure event probabilities of system components. Currently, most prediction cal-
culations are based on two-state (success vs. failure) models using part failure
rates and exponential life distributions. Because of the many simplifying assumptions,
little significance can be attached to the magnitudes of the numbers obtained. Some
advanced techniques consider more than two states as discerned by the failure modes
and effects analysis, and more appropriate life distributions are also available.
Although the framework has been developed for including performance degradation
failures in prediction, the value of reliability prediction at present lies more in
the design weaknesses detected in performing the analysis and to compare alternative
designs than in the actual numbers resulting. The application of these techniques
by computers is treated in Sec. 7. Computers play a valuable role by enabling more
realistic prediction models to be employed and by performing the computations which
produce the reliability estimates resulting from these models.

Each method above separately provides useful design information, but to assure
appropriate emphasis on both performance and life, the results from the various
methods must be considered jointly, Because of the different forms of the results
the combination process is primarily subjective, so the computer can provide little
help here., As an example on the combination of the tasks, suppose that parameter
variation analyses have yielded worst-case results for two designs being compared
and that Design A has smaller variations than Design B. Reliability predictions with
conventional two-state analyses may, in turn, indicate that Design B has a higher
probability of success. Indications are thus that Design B represents an improvement
in life over Design A, however at a sacrifice of performance. If there is adequate
confidence in the results of each, a trade-off may be necessary, for example, re-
sulting in Design C that uses some of the better features of Designs A and B. On
the other hand, lack of confidence in the results may dictate the need for more
sophistication in the analyses. For example, an extension of prediction to more
realistically include additional modes of part failures and their effects may show

that Design A is the better from the standpoint of life.
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No one of the reliability tasks provides a "cure-all" for reliability,but through
their coordinated and combined use, the maximum assurance for reliability is achieved.
Also,the responsibility for reliability cannot be delegated to reliability specialists
alone. Reliability is a responsibility of all personnel, but the major responsibility
rests with the designer. Good engineering 1s, and will remain, the major key to re-
liability. The methods are provided as a supplement to, but not a substitute for,
good engineering practice.

Just as performing these tasks is no substitute for good engineering, neither
is the indiscriminate use of the computer to perform such tasks good reliability
engineering. Computer methods should be selectively used in design for reliability,
and used only when they can provide genuinely useful results within the economic, time
and other relevant constraints on the design under consideration. Within the bounds
of these constraints, the computer aids to design for reliability which are discussed
in the remainder of this report comprise a powerful set of tools for insuring that

a reliable product is produced.
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4. Parameter Variation Analysis

There are two ways in which a piece of equipment or a system can fail to perform
its intended function. One is catastrophic failure,which is likely to be abrupt and
to have a dramatic effect on equipment or system operation. In an electronic circuit,
a typical catastrophic failure is the opening or the shorting of a diode or a transistor.
The other type of failure is drift failure,where due to the variations of equipment
parameters with time, the performance of the equipment at some time becomes no longer
satisfactory. The prediction of drift-type failures requires a study of combinations
of component parameter values and the resulting effects of the drifting of these
values on equipment performance. Studies of parameter drifts and their effects on
system performance comprise parameter variation analysis (PVA). The availability of
the high speed digital computer has made possible a dramatic increase in the ability
to perform extensive PVA studies and as a result improve fhe reliability of the equip-
ment by minimizing via design modifications the likelihood of a drift~type failure.
4.1 PVA Modeling

A PVA model must be adequately accurate to simulate the equipment behavior over
the entire range of environments expected for the equipment*. To enable the PVA
analysis to be accomplished, the model must express the relationships between the
performance characteristics of interest and all the parameters to be included for
study. In many cases, the equipment passes through several distinct operating regions,
and it is necessary that the model adequately represent each region. A change from
the ON to the OFF state of a transistor, for example, requires a new equivalent circuit
for the transistor, and each such equivalent circuit must adequately simulate the
actual circuit operation to provide engineering confidence in the performance it pre-
predicts.

At the core of any parameter variation analysis is a mathematical model; in

explicit form,

¥, (t) = g [x(t)1] (4-1)

or implicit form

gjlz(t),Yj(t)] = 0,

where

Yj(t) is the jth performance attribute or measure,

*
Some very practical viewpoints on modeling are presented in Vol. I - Parameter
A

Variation Analyses of this series.
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X(t) 1s a vector comprised of the environment inputs, such as environ-
mental stresses and loads, plus the component characteristics,
t is the time variable, and
g.,j=1,...,N 1is the set of models corresponding to the number of responses or
the order of the differential equations which describe the transient

behavior of the system.

For example, the model may be of the form of a system of differential equations,

2 oY
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where the c,; depend on the input vector X through a set of explicit expressions.

The time behavior for the model may appear in one of several ways. For example,
it may be a gradual deterioration of a component and hence result in a corresponding
change in the values of one or more of the component characteristics. In order to
analyze an element or system for this type of degradation, the wearout characteristics
of the system must be known or estimates must be available.

A second way in which time may appear is through the mission profile. For
example, if it is known that the temperature profile is critical and how the part
characteristics vary with temperature, then an analysis can be performed by describing
the temperature-part characteristic behavior by deterministic and/or random processes
and performing the analysis at several times in the mission life.

Time may enter the analysis directly through the transient behavior. In this
case a program for solving differential equations may be required for relating the
transient characteristics to the pertinent element parameters, inputs, etc. In
whatever manner time enters the analysis, it is assumed that it may be included by
a procedure such as one of the following:

(1) A deterministic function of time such as a linear or exponential decay

function.

(2) An autoregressive scheme such as

X, =A

jt 1 t-1

X, + A (X, - X, .
Js 2¢ j,t-1 J,t—2)
(3) A stochastic process such as a normal stationary process superimposed on

a deterministic drift.

29



(4) A system of differential equationms.

4,2 Analysis Techniques
' Several analysis techniques are used for PVA on a computer. One of the most

widely used is worst-case analysis. The worst-case method is a nonstatistical approach

which is intended to determine whether it is possible, within the specified tolerance
limits on parameters, for the system performance to fall outside the specified per-
formance limits. The answer is obtained by using performance models, and setting

the parameter values at combinations of upper and lower tolerance limits to obtain

the worst-case performance. A related PVA technique is sensitivity analysis. Worst-

case and sensitivity analyses typically use the same mathematical techniques, as is
discussed later. The purpose of a sensitivity analysis is to determine how sensitive
a system performance variable is to variations in input variables.

Another common technique for performing PVA is the moments method. This technique

combines statistics and system analysis to determine the probability that performance
will remain within the specified limits; the technique is often called the propagation-

of-variance method as second moments of distributions are usually the highest moments

used. The method applies the propagation-of-variance formula to the first two moments
of the component part probability density functions to obtain the equivalent moments
of the performance distribution.

The convolution method for PVA is another approach to obtaining statistical

distributions of output variables. Although potentially a quite general method, the
technique reported here and as implemented by computer programs is a simplified
version of the general convolution method.

In the Monte Carlo method component values are selected randomly; the performance

of each randomly generated configuration of the equipment under study is calculated
and compared with performance specification limits. This technique has the advantage
that any component parameter distribution can be handled; it has the disadvantages
that it requires a lot of computer time and offers little help in identifying and
correcting failures,

The implementation on a computer of each of the above techniques is now treated
in detail. Some of the computer programs which are available for implementing the
techniques are discussed.

4.2.1 Worst-Case Analysis

The theory on which worst-case analysis is based derives from expressing the
model performance parameters Yj as functions of the input vector X = (Xl, XZ""’Xm)
and expanding these functions in Taylor series. The input vector X consists of all
pertinent part characteristics, inputs, loads, and environment factors. Let the model

for an arbitary performance parameter Y be
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Y=gX = g(Xl, X2,..., Xm). (4~2)

A Taylor series expansion about the nominal value of Y for its change from

nominal value is

m ,2
a2 ) 2 X, +2 7 2L wx )% + ..., (4-3)
oX i 2 . 2 i
i=1 "71i i=1 3X
X S
where
AY = change in value of Y from its nominal value,
Axi = Xi - Xi , the worst-case deviation of the i-th independent variable
N

Xi from its nominal value X, , and

= (X , X s «oes X ) , the nominal values of the X's.
Iy’ 2 N

Eq. (4-3) is a simplified expansion which includes no cross-product terms; a completely
general Taylor series expansion is given in Appendix B, Vol. I - Parameter Variation
Analysis of this series. 1In practice the cross-product terms are seldom used even in
computer programs, so Eq.(4-3) is the expansion most likely to be found. Frequently only

the linear terms are used; the expansion then has the familiar form

N 9Y Y
AY = BXl AXl + 3X2 AX2 + ...

Y
+ 3% AXm .
m

(4-4)

To perform a worst—case analysis, the partial derivatives of Y with respect to
each independent variable Xi must be computed. Several techniques are used to compute
derivatives on a computer. The "Eight Point Central Derivative Formula'" is a popular

method [Refs. 4-1 and 4-2]. This formula for the first partial derivative is

4 4

T T S R M T

Y ..)

+3h =~ '-3h

(4~5)
1
=280 Masn ~ Yoandl-

This formula is evaluated by stepping the input parameter Xi four equal increments
h each way from its nominal value Xi , and calculating the value of Y for each step

while holding all other independent Nvariables X., j # 1, at their nominal values.

3
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In this formula, h is expressed as the fractional change in Xi; if one percent of
X, is the step size, h is 0.0l. The values of Y are then substituted into Eq. (4-5)
and the partial derivative Blexi obtained. This method is used in the worst-case
analysis method called MANDEX, which is perhaps the most widely used worst-case
computer method [Ref. 4-2].

A second formula for computing partial derivatives via computef is the five-point

central difference formula [Ref. 4-3]. The first derivative formula is

e

g2 1
i 7K 120

X

(Y -8 . +8

—2h —1n ¥ 84an T Yyon)- (4-6)

This is evaluated analogously to the eight-point one, but its accuracy is somewhat
less, However, its accuracy usually is adequate when only the first derivatives are
used in the Taylor series expansion., A five-point formula for the second partial

derivative with respect to one independent variable is

2
3 Y vl
Y." = —— = —— (-Y + 16Y_.. - 30Y + 16Y - Y )3 4-7)
i axiz 12h2 -2h 1h fo) +1h +2h

Xy

these five-point equations are used in one of the PVA program discussed later. Eqgs.
(4-6) and (4-7) are derived in Abramowitz and Stegun [Ref. 4-4]; note that in these

equations h is just a number, not a fraction of X,

Having evaluated the partial derivatives, the worst-case limits are next computed.
The signs of the first partial derivatives are examined to enable a procedure for
computing worst-case limits which reduces computing time. A worst—case maximum by
definition occurs when the performance parameter Y takes on its greatest value, i.e.,
when AY is maximum and positive. Consequently, all input variables with positive
first partials are set at their upper limits and all with negative first partials
at their lower limits. This procedure gives the worst-case maximum in the linear
Taylor series expansion, Eq. (4-4), siﬁce each term is a product of either two
positive or two negative quantities. For the worst-case minimum, lower limits are
used for the Xi with positive partials and upper limits for those with negative partials,
producing all negative terms and hence the worst-case minimum in the linear series
summation for AY.

It is possible that the partial derivative of an output variable Y with respect

to an input variable Xi is not linear; then the above procedure does not necessarily

*
MANDEX is an acronym for modified and expanded worst-case analysis.
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produce true worst-case limits. Linearity checks or more complex series expansions
can be incorporated to prevent such inaccuracles from going unnoticed. These safe-
guards are discussed in Sec. 4.2,5 as to how they are implemented in specific PVA
programs. _

Worst-case analysis is applied most widely to electronic circuits, but it is
equally applicable to any system for which a performance model can be derived and
input parameter variations are known or can be reasonably estimated. The proper
use of worst-case analysis is as a first step in the PVA study of a system. If the
system passes this parameter variation analysis, it is almost certain to pass any
other. Hence it is possible to accept a design if it passes worst-case analysis.
Conversely, it usually is in error to reject the design only because it fails a
portion of a worst-case analysis, since the probability of obtaining a true worst-—
case condition in practice is very small. A failure to pass a worst-case analysis
usually indicates that other analyses should be performed.
4.2.2 Sensitivity Analysis

An important PVA technique related to worst-case analysis is analysis of the

sensitivity of system performance to variations in input parameters. Although several
different definitions of sensitivity are found in the literature [Refs. 4-3 and 4-5],
in essence the sensitivity of a system is simply a measure of the effect of parameter
variations on the system performance. In equation form sensitivity can be expressed
by

J = _
sxi AYJ./Axi , (4-8)

where
SXJ is the sensitivity of the performance measure Yj to the variation in the

system model parameter Xi,
AYj is the change in Yj’ and

AXi is the variation in Xi'

An alternative form is the normalized sensitivity

Yj AY, /Y,
5, T W./X, (4-9)
i i’ 71

it is more frequently used.
Each of the terms on the right side of Eq. (4-9) is either available or easily
obtained from the performance model. All that is required to obtain sensitivity is

to calculate AYj (the change in Yj produced by the change in Xi only) and then perform
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the three arithmetic operations indicated in Eq. (4-9) for each performance variable
.Yj and input variable Xi' - The combination of worst-case and sensitivity information
on a design 1s complementary, particularly when design modifications are required.
Suppose a design fails to pass a worst-case analysis for a performance measure Yj
with respect to a variable Xi' If also the sensitivity Si? is high, e. g., a 1%
change in Xi produces a 57 change in Yj’ a redesign around the variable Xi may be
needed. If worst-case analysis with respect to Xi fails for several output variables
Yj'and the corresponding sensitivities are high, such a redesign probably is required.

The accuracy of a sensitivity calculated with Eq. (4-9) is obviously limited
by the accuracy of the assumptions and approximations used in the calculation. For
example, maximum sensitivity may occur somewhere between, rather than at, the upper
and lower input parameter limits. The remarks made for worst-case analysis on
linearity and higher order series expansions also apply here.

4,2.3 Moments Analysis

The moments method of PVA analysis has this name because it makes use of the
moments of the statistical distributions of input parameters to obtain the moments
of the distributions of the system performance measures. As usually implemented on
a computer, it makes use of the first moment (the mean) and the second moment about
the mean (the variance) of the distributions of the input parameters to obtain the
mean and the variance of the distributions of the system performance measures. When
a distribution is normal these two moments describe it completely. Although distri-
butions which are found in practice are seldom precisely normal, the accuracy is often
adequate for PVA purposes. This simplified form of the moments method, called the
propagation-of-variance method, is what is described below.

The mean values for the model output parameters are obtained by programming the
computer to insert mean values for all the variables in the system model input vector
and then solve the performance equations. The computer then calculates the second
moment about the mean, i.e., the variance,of each output variable by evaluating the
propagation-of-variance formula given below. An additional feature incorporated in
some programs is that each of the terms in the propagation-of-variance formula is
divided by the total variance to give an indication of the fraction of the variance
contributed by each input parameter.

The propagation-of-variance formula is the heart of the computer-implemented
moments method of analysis. This formula is the mathematical statement that the
performance variability is the net result of the variability of all the input para-
meters in the system, and that the contribution of each input parameter depends upon

its individual variability and on the relative importance of that parameter in
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determining the performance characteristic of interest. The propagation of variance

formula is

2 g aYi 2 2 Nil g aYi aYi
g, = G+ o, +2 P 0y 0. G Gy (4-10)
j=1 8X;] }_(J X_-] r=1 s=r+l °° - 23 er X Bxs X
T s
where
oi is the variance of the performance parameter Yi,
2 . .
0y 1is a variance of the input parameter Xj’

N is the number of contributing input parameters, and

X, is the mean value of Xj'

A

The term P rs is a correlation coefficient that relates the parameter contribu-
tions Xr and XS, and the subscripts (Xj, Xr’ and XS) indicate the points at which
the partial derivatives for these input parameters are obtained.

The first term in Eq. (4-10) includes the variance of each input parameter and
the partial derivative of the performance measure with respect to that parameter.
Since the factors in this term are squared they are all positive. The second term
in the equation can be either positive or negative; it includes each pair of
correlated parameters, This term simulates the true situation in which correlation
between two input parameters can either increase or decrease the total performance
variability. From this equation the variance of any performance measure Yj can be
obtained from knowledge of the mean, variance, and correlation coefficients of each
input parameter.

In the propagation-of-variance method all output variables are assumed to be
linear functions of the input variables, and all input parameter distributions are
assumed to be normal. Hence, non-normal input parameter distributions are approxi-
mated by normal ones in the propagation-of-variance formula. As seen from Eq. (4-10),
the method requires the calculation of partial derivatives. This can be done in pre-
cisely the same way that the partial derivatives are calculated for worst~case analysis.

Possible sources for values of moments of the input parameter distributions are
manufacturer's data, testing a large number of components, or assumptions based on
experience. For example, recording and plotting the resistance values of a large
number of resistors of a given nominal value will produce a plot, known as a histogram,
as shown in Fig. 4.1, In the figure the widths of the small rectangles, called cells,

represent equal increments of resistance values that fall within the individual
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Figure 4-1. Histogram of Resistance Values for a Resistor

resistance increments. The sum of the heights of all the cells equals the total
number of resistors tested. A mean value for this input parameter, namely resistance,
can be calculated by adding together the resistances of the individual units and
dividing the sum by the total number of units., The variance, 02, is calculated by
taking the number of resistors in each cell and multiplying each by the square of
the difference between the midcell value and mean value; these products are then
added and divided by the total number of resistors to give 02. The square root of
the variance,o , called the standard deviation, is frequently used to discuss the
dispersion of normal frequency distributions.
4.2.4 The Convolution Method

The convolution method is another attempt to account for the statistical
distribution characteristics. The simplified form discussed here also relies on the
partial derivatives as computed above. This approach has generally found only limited
practical application; a computer implementation and comparison with other techniques
is described in Ref. 4-6.

The convolution method described in Ref. 4-6 is a specialization of the more
general analytical approach described in Ref. 4-7. The basis for the conveolution
method is the assumption that the total variation in an output performance parameter
is the sum of the deviations caused by each input parameter independently. This is

analogous to the assumption that no mixed product terms of the Taylor series are
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required. When limited to linear terms only, the partial derivatives represent the
functional relationship between each individual parameter contribution and the para-
meter variations. For a particular interval of the total range of variation of the
output performance parameter, the corresponding interval of each of the model para-
meters can be determined by obtaining the inverse of the partial derivative. The
probability that the output parameter lies in a particular interval is the sum of
the relative probabilities for the individual input parameters in their. respective
and corresponding intervals. Repeating this process over the appropriate intervals
to cover the total range of variation yields a histogram representation for each
output parameter. Since the convolution method does not assume normal distributions,
it can be used to advantage when input parameters are known to have distributions
differing significantly from normal.
4,2,5 Monte Carlo Analysis

The theory of the Monte Carlo approach to PVA is based on a statistical theorem
called the Glivenko~Cantelli theorem [Ref. 4-2] which is:

Given a function of n random variables, Y = f(Xl, XZ""’ Xn) with each

variable Xi described by a distribution, then select a value for each Xi,

i=1, 2,..., n, from their respective distributions and compute a value of

Y. Repeat this procedure for m times. As m tends to infinity, the distri-

bution of Y obtained approaches the actual distribution of Y.

In contrast to worst-—case analysis which obtains only end-limit vélues and to
propagation-of-variance analysis which assumes normal distributions only, a Monte
Carlo analysis determines the actual statistical distributions of the cutput variables.
The Monte Carlo method permits computer simulation of a brute-force empirical approach.
The empirical approach would require the actual construction from representative
components of many copies of the system under study. As many copies would be made
and operated as required to obtain good statistical estimates of the system output
variables and the variations in these variables. This empirical approach is usually
highly impractical, and it is seldom if ever applied.

By using a digital computer to simulate the above empirical technique, many of
the objectionable features are removed. Given the mafhematical model of a system
under study and a description of the component part populations, it is possible by
doing enough simulations to obtain to any reasonable degree of accuracy the distri-
butions of the performance measures. The Monte Carlo method requires the complete
statistical distributions of the input variables at some particular time t. The
computer randomly selects a value for each input parameter from its distribution
and uses this value in computing the solution. The values from a multi-parameter

part cannot be given simply as distributions. Instead they must be listed in a way
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such that all the parameter readings from the same part are grouped together with any
necessary correlations. Then the Monte Carlo method makes a single random selection .
froﬁ this listing which determines all the correlated parameter values for the multi-
parameter part.

In the Glivenko-Cantelli theorem, each of the random variables Xi’ which are in
this case the system model input variables, can have either a continuous probability
density function or a discrete probability density function. Because only discrete
quantities can be used in computer, only discrete probability density functions are
of interest to the Monte Carlo method of analysis. A discrete probability density
function is simply a normalized histogram., Shown in Fig. 4.2 is the normalized

version of the histogram of Fig. 4.1.
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Figure 4-2. Normalized Form of Fig. 4-1; Probability
Density Function for Discrete Random Variable X

Given a discrete distribution of associated(f(X), X) values as shown in Fig. 4.2,
the discrete random variable X possesses the properties:
Given the values X = Xa and X = Xb’ p[Xa < X< Xb] is the probability that
X 2 Xa and X < Xb’ where Xa < Xb.
Also,
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N
F(X) = izl £X) = plXx =X,

where F(Xn) is a point on the discrete cumulative distribution. The summation applies
to those values of the random variable X which are less than or equal to the Xn
specified in the summation, The cumulative distribution for the random variable

X of Fig. 4.2 is shown in Fig. 4.3.

0.75

0.25

Figure 4-3. Cumulative Distribution for Discrete
Random Variable X of Fig. 4-2

An important point to understanding the Monte Carlo method is the observation
that an area under the probability density curve amounts to a point on the cumulative
distribution curve. Thus, given a density function £(X) for which the total area
between X=0 and X=Xn is 0.2, then the value F(X) at X=Xn is 0.2. In a Monte Carlo
computer program the computer converts all the probability density functions to
cumulative distributions. Then the computer generates random numbers and associates
each of these numbers with a particular point on each cumulative distribution. The
random numbers in this context are numbers chosen at random in the range between
0 and 1.

In order to obtain reasonable accuracy with the Monte Carlo technique a large number

of randomly-generated replicas of the system are made;for the solution to each replica the
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output parameters of interest are obtained from the system model equations. The total
number of system solutions (also called system simulations) required is obtained via

a tradeoff between accuracy and the cost of computer time. This number can vary
anywhere from 50 to 5,000 or more depending on the particular application. The

number of solutions typically used for one program is 500 [Ref. 4-2]. When practical,
a profession statistician should be consulted on how to arrive at an appropriate
number of simulations for a given system and purpose.

Once all the Monte Carlo solutions have been generated, the probability density
functions for each of the output performance measures can be obtained. Since the
complete distribution for each output variable is available, coefficients which de-~
scribe the various statistical properties of the distributions can be computed as
required.

It should be recognized that due to the large number of system simulations re-
quired, the Monte Carlo technique is best suited to variation analysis of systems
which cannot be handled by less brute-force techniques. Its cost and time limitations
must be considered before choosing the technique for a particular system. In a circuit
analysis program, for example, dc solutions can be obtained at reasonable cost via
the Monte Carlo technique; Monte Carlo ac solutions are usually less practical.
Finally, the relatively large amount of computer time required for a single transient
solution of a circuit means that it is unreasonable to attempt to obtain sufficient
transient solutions to make the Monte Carlo technique a practical approach to obtaining
distributions of circuit performance measures related to transient responses.

An interesting variation on the Monte Carlo technique has been reported [Ref. 4~2].
It combines portions of worst-case and Monte Carlo analysis. Often the data giving
the actual distributions of input pa.-meters are not available. What has been done
in the cited reference for. such cases is to substitute a rectangular distribution
whose upper and lower limits are the upper and lower worst-case limits. A Monte
Carlo analysis is then performed, which provides a better estimate of circuit perfor-
mance than would be obtained by using the conventional worst-case analysis. Since
the actual input parameter distributions are not rectangular, the probability of
selecting values close to the worst—case values is greater than for the actual distri-
butions. Consequently, the resulting distributions are less optimistic than would
be obtained from the actual input distributions but are not as pessimistic as worst-
case solutions.

4,3 PVA Computer Programs

Many computer programs exist for implementing individually the PVA techniques

discussed in Sec. 4.2. Some of these programs are listed in Table 4-1. However,

relatively few are known to exist which are available outside the organizations
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Program Code
PV-RTL

MCS~IBM
MCS~GDC

PV-LS
PV-SE

MANDEX-NAA

MM-NAA

MCS-NAA

VINIL-NAA

PVM~NAA

Table 4-1

Programs in the PVA Area

Program Description

Performance Variation analyses; general program
for worst-case, moments, simulation, etc.

Monte Carlo Simulation for performance variation
analysis with programmed functional model

Monte Carlo Simulation for performance variation
analysis with programmed functional model

Performance Variation analysis program for systems

Performance Variation analysis program using Monte
Carlo simulation with programmed mathematical model

Modified AND EXpanded worst-case method for analysis
of circuit performance variations with circuit
equations

Moment Method for circuit performance variation
analysis with circuit equations; computer mean and
variance; correlation included

Monte Carlo Simulation for circuit performance
variation analysis with circuit equations; corre-
lation included

!1N IL method for circuit performance variation
éﬁgiygis with circuit equations

Parameter Variation Method for circuit performance

variation analysis with circuit equations; one-at-
a-time and two-at-a-time analyses

Organizations (Originator

or User/Sponsor) References
RTI/NASA 4-3
IBM/AF-RADC 4-8
GD-Convair/? 4-9
Lear Siegler/NASA 4-10
Sylvania Electronics/ 4-11
AF-RADC

NAA/? 4-2
NAA/? 4-2
NAA/? 4-2
NAA/? 4-2
NAA/? 4-2



where they originated and which combine several PVA techniques into a single program.
A FORTRAN listing of a general PVA program which implements nearly all of the PVA
techniques discussed in Sec. 4.2 is given in Appendix A; it is described in some
detail below.

Two widely used circuit analysis programs which have some PVA capabilities are
ECAP and NASAP. The Electronic Circuit Analysis Program (ECAP) is available to
users of IBM computers. The Network Analysis for System Application Program (NASAP)
is a NASA program. Although working at a number of computer installations, NASAP
is still in development. These two programs and their PVA capabilities are discussed
later in this section.
4.3.1 A General PVA Program

A flow diagram of a general PVA program is shown in Fig. 4-4. As can be seen

from the figure, the program is keyed to the subroutine which evaluates the performance

model. To make the program applicable to any kind of system, no built-in performance
model subroutine is included; this subroutine must be supplied by the user of the
program [Ref. 4-3].

The input to the program is a mathematical description of the system model
(and the time behavior of the model, if required), the number of random variables
and the number of fixed variables involved, the means or nominal values of the input
variables, the standard deviations or step sizes in the input variables, the input
variable distributions, if available, and the correlations of the input variables.
An additional input that is required for some analyses is a selection of values of
the element parameters at which the performance model is to be evaluated. 1If these
values are selected methodically according to some statistical design, this allows
for efficient generation of the outputs to use in a ﬁultiple regression analysis,

Monte Carlo Simulation

A Monte Carlo simulation is used to estimate the performance distribution in
terms of the input distributions, characteristics, etc. If the input variables are
normally distributed the means, standard deviations, and the correlation matrix are
required. If the input variables are not normally distributed the appropriate dis-
tribution characteristics must be specified. The program has provisions for handling
any one of the following distributions:

(1) Uniform,

(2) Normal,

(3) Log-Normal,

(4) Exponential,

(5) Weibull,
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(6) Gamma (Integral values of one parameter),
(7) Chi-Square,

(8) Triangular, and

(9) Beta (Integral values of both parameters).

Uniformly distributed variables are first generated; they are then transformed
according to the methods described in Ref. 4-3, Appendix B to variables having the
appropriate distributions as specified in the input. These transformed variables
are then used to compute the performance measures such as voltage output, current
output, power dissipation,etc. The performance measures are generated the number
of times required to obtain the desired precision of the results. When the inputs
are precisely known, the number of trails necessary to estimate the distribution
function of a performance measure to the required degree of precision for a one-
dimensional distribution can be estimated from the Kolmogoroff-Smirnov statistic
for the maximum deviation 4 between the sampled distribution function and the true
(but unknown) distribution function. Table 4-2 displays the number of observations
necessary in order that the probability be a that the maximum deviation between the

distribution function and the sample function exceeds the value d.

Table 4-2
Percentiles of the Distribution of d

for Several Values of l-a

1-a
N 0.80 0.85 0.90 0.95 0.99
5 0.45 0.47 0.51 0.56 0.67
10 0.32 0.34 0.37 0.41 0.49
20 0.23 0.25 0.26 0.29 0.35
30 0.19 0.20 0.22 0.24 0.29
40 0.17 0.18 0.19 0.21 0.25
50 0.15 0.16 0.17 0.19 0.23
For larger values of N 1.07 1.14 1.22 1.36 1.63
AN VN VN N %
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Hence, if N is 50 the chance is 0.05 that the maximum deviation between the sample
distribution function and the actual distribution function exceeds 0.19; if N = 100,
d = 0,136, and if N = 1000, d = 0.043. When high precision is needed, it is possible
to perform a very large number of simulation trials. However, it must be remembered
that the cost in computer time per simulation depends on the complexity of the per-
formance model subroutine,

In practice the distributions of the component characteristics are seldom known
very precisely. Hence there is a precision of the distribution of the performance
measure beyond which it is impractical to attemp to refine the estimate of the true
distribution. In fact, very often a uniform distribution of the input variable is
assume because of the lack of knowledge concerning the true distribution.

Suppose now that a rational procedure is available for estimating N and that N
values of the performances have been computed. Then the N observations are ranked
in ascending order of performance, their first four central moments are computed,
and the measures of skewness and kurtosis are obtained. From the statisties it can
be decided which distribution to fit to the data or which series approximations to
use., The approximating distributions can be fitted by the method of moments.

In this program the Edgeworth series and/or Laguerre polymonials are used to
approximate the unknown distribution function. The methods for fitting these dis-
tributions are given by Kendall [Ref. 4-12].

Sensitivity and Moment Analysis

This program obtains Taylor series approximation to the models and as illustrated
in Fig. 4-4 subsequently uses them to predict worst-case performances, to estimate
sensitivities of performance measures to inputs, to check for nonlinearities and
interactions of behavior with respect to inputs, and to perform a moment analysis.

The step sizes are chosen to include the expected range of variation of the input
variables as a result of the environments described by the mission profile, the
inherent variations in the part characteristics, and the aging effects.

This part of the program first computes estimates of the first and second partial
derivatives of the performance measures of interest with respect to each of the
pertinent part characteristics, inputs, loads, etc.; the five-point central difference
formulas are used for obtaining the partial derivatives.

Having obtained the first and second partial derivatives of a performance measure
with respect to the independent variables, the following Taylor series expansion is
obtained.

1 1 1" 2
Y(hl’hz""’ hm)— YN + }:Yi hi + 2 m(i hi + ... (4-11)
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Y,, 1s the nominal value of performance measure Y,

1]
Yi&Y are respectively the l-st and 2-nd partials of Y with respect to input
variable X,,

h is the change from nominal of Xi, and the sums are over all m input variables.

Dividing by YN yields

Y
v = 1+ ZLSi + ZQSi ’ (4-12)
n
where
LSi = a measure of linear sensitivity of the performance measure to the
i-th input variable
T
Yi hi
Ls, = (4-13)
i Y
N
and
QS. = a measure of second degree or quadratic sensitivity (denoted as nonlinear

i
sensitivity in the program output) of the performance with respect to the i-th input

variable and is given by

2
Y, hi /YN' (4-14)

N

Qs; =

These two quantities are printed out for each of the N variables. The sensitivity
measure associated with the i-th variable is essentially the relative change in
the performance measure as a function of the maximum expected change in the i-th
variable. The definitions of sensitivity and non-linearity are suggested by the
Taylor series expansion. As noted earlier, there are several definitions of
sensitivity appearing in the literature. The definitions used in this program are
very convenient in estimating the relative change in a performance measure Y for
the expected changes in the independent variables.

The Taylor series expansion as presented above does not include terms with
mixed partial derivatives. To obtain the second partial derivatives with respect
to all pairs of independent variables would require considerably more computing
time, The computation is performed using only the first partials and the pure
second partials; the series approximation is then checked for its adequacy. If the
results are not as precise as required, the appropriate mixed second partials are

obtained by a program described in the section on Interaction Analysis.
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Worst—~Case Limits

The worst-case limits are computed by the procedure described by West and Scheffler
[Ref.4-13]. The signs of the first partial derivatives are examined; the variables
for which they are positive are placed at their high values, X + h, and the variables
for which they are negative, at their low values, X — h , in order to estimate
an upper worst-case limit. Conversely, to estimate a lower limit the variables for
which Y' is positive are placed at their low values, and for Y' negative, at their
high values. The worst-case limits of the performance measures are computed by
actually substituting the appropriate values of the variables into the functions
comprising the performance model. The computed worst-case limits are then compared
to the limits estimated with the Taylor series expansion. If these values do not
agree to within the required accuracy, the omitted terms, namely, the mixed partial
derivatives (interactions) and the higher order pure terms must be investigated. The
higher order pure derivatives are conveniently checked one variable at a time by
comparing the functional value at the two end points with that estimated by the
first and second partials with respect to that variable. These checks suggest the
source of any lack of precision.

Moment Analysis

The moments of the performance measures can be obtained from the Monte Carlo
simulation runs or from an error propagation analysis based on the Taylor series
approximation. The latter is simpler to compute and not subject to sampling fluctua-
tions as is the former. However, the series approximation is subject to the lack
of precision with which it approximates the true function.

Let

]
<
V]

1
BX, + 5 Y AX

2
1 7Y
+5 ¥ 3§;3§; BX; 0%,

X

If only the first order terms are used, the estimates of the mean and variance

of Y, denoted by fi{Y} and 62{Y} respectively, are given by

a{Y} Y

N

2 3y oY -
X ax Cov{x,,X,}

T 3 | & !
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where
Cov{Xi,X }

e{xi} aixj} p{Xi,X }

b 3
G{Xi} = estimated standard deviation of the measurements X5
p{Xi,Xj} = estimated simple correlation of the measurements on Xi and Xj.

1f Xi and Xj are characteristics of two distinct components, then p{Xi,Xj} = 03

otherwise, it is estimated by

Z(Xik_xi)(xik_xj)

o{X,,X,} = .
{Z(xij-xi) . z(xjk-xj) }

If the first and second order terms (not including the mixed partials-interactions

terms) are used in the approximation, then further terms are required in the moment

analysis.
Let
]
Yi denote %%—
Xy
2
" aY
Y denote TP e—
PRy 3 3
ij XiBXj §N

then the estimated mean and variance for Y can be written as
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where E{X} denotes the expected or mean value of X and ﬁ31 and ﬁAi are the estimated
third and fourth moments of Xi’ i=l,...,m. A similar expansion may be obtained with
the interaction terms included.

In the above analysis it has implicitly been assumed that the relationship
between the performance measure Y and the part characteristics, Xi’ i=1,...,m is
known, that is, the coefficients are known., However, in practice the relationship
may be obtained from empirical data and the coefficients may be considered estimates
of true but unknown values. The extent to which the data are available should then
be reflected in the precisions of the inputs to the error propagation analysis. A
complete discussion of this problem is given in Marini, Brown, and Williams [Ref. 4-14].

Interaction Analysis

In case the worst-case limits computed directly from the functions are not ade-
quately approximated by the linear and pure quadratic terms, it is necessary to
compute the mixed partial derivatives for the pairs of variables which are expected
to yield significant interaction effects. The mixed partials can be computed by
one of the following two methods.

One procedure would be to compute the first partial derivatives with respect
to the i-th variable at five different values of the j-th variable. These partials
would in turn be used to compute the second partial. This procedure assumes a
degree of smoothness of the analytical function.

A second procedure would be to generate the performance measure for selected
sets of values of the independent variables and then fit by regression techniques

‘the functional form
Y = b0 + Z bixi + biixi + LI binin .

This assumes all higher order effects can be adequately accounted for by a second
degree polynomial function. The coefficients of the terms Xin would correspond
to the mixed partials under the assumption. The selection of the values of the
variables can be performed efficiently by the method of statistical designs for
factorial experiments. Methods for generating the appropriate design are described
by Addelman [Ref. 4-15].
4.3.1.1 General PVA Program Example

The general PVA program which has been discussed in the preceding pages
can be used to perform a wide variety of variation analyses for a wide variety of
systems. Some examples using this program are given in Ref. 4-3, A simple example
is reproduced here from that reference.

A second degree polynomial was chosen for illustration of the program.
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_ 2 2
Y = 1+ 2% + 2%, + 3KX, + 4X] + 4X, .

2 2

There are two independent variables, Xl and X2, and one dependent variable Y denoted
by POLY in the program input. One hundred (100) simulation trials were performed

assuming X. and X2 are normally distributed with means 10 and 5 and standard derivations

0.2 and 0.35, respectively, and correlation 0.5.

In the interaction analysis part of the program, one needs to indiLate which
independent variables, from those available, are to be used in the analysis. In
the specific example there are only two such variables and both of them are used as
indicated by inputs 4 and 5. If there were 10 variables in all and only five variables
to be used in the analysis, e. g. variables numbered 1, 3, 5, 8, and 10, then input
5 would be these numbers in the appropriate format and input 4 would be NVT = 5 and
NVU = 5 provided all 25 combinations of the 5 variables were used. See Addelman
[Ref.4-15] for methods of statistical design of experiments for using a fraction of
25 runs, The inputs and outputs for various parts of the program are listed on the
following pages. The program outputs are from the Bunker~Ramo 340 computer; the
program is written in FORTRAN II language. For convenience of reproduction of this
report, the printout from the program has been reproduced by typing. The printout
format has been preserved.

Program Input Description for Simulation

(1) The first card has the starting value, XN, for the random number generator.
Format (¥10.0).

(2) Input card 2 gives the number of models (not more than five) followed by a
four letter identifier for each model. Format (I12,5A4).

(3) This card provides the actual number of variables and the number of corre-
lated variables for each model, and the number of simulation trials for
all models. Format (11I5).

(4) These cards contain information necessary for a readable output. The first
contains the names of the distributions of the random number generators (each
name is limited to twelve characters). The second has the names of the two
polynomial fit routines,namely Edgeworth and Laguerre. Format (20A4).

(5) The variable input cards contain nominal and deviation values, a parameter
name, and a random number generator call value. The call value is the argument
for a COMPUTED GO TO statement and calls the appropriate generator subroutine.
Format (2E10.4,A4,14). Those variables which have non-zero correlations with
other variables must be read in first.

(6) If there are correlated variables, the values are read as an upper triangular

matrix. Format (16F5.0).
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Input Description for Sensitivity,Worst—Case, and Moment Analysis

a)

(2)

Model identification is on the first card. The number of models, not to
exceed 10, is followed by four letter model descriptors. Format (12,10A4).
The next card gives the variable information for each model. The number

of variables for each model, not to exceed 20, is in Format (10I2).

(3&4)These cards are identical to the simulation input card types (5) and (6).

The nominal and deviation values (one-half the expected extreme deviation
values) are in the same format and the variable name should also be given,

(2E10.4,A4). Correlated variables, Format (16F5.0).

Input Description for Interaction Analysis

)]
(2)

3)

%)

(5)

(6)

Card one is for the number of models, Format (I2).

Card two specifies the total number of independent variables (NV) and the
(alphanumeric) name for the dependent variable. TFormat (I2,A4).

The variable cards specify the nominal values and deviations of each
independent variable, as well as its (alphanumeric) name. There is one
card for each variable. Format (2E10.4,A4).

This control card indicates the number of variables (NVT) to be used in the
interaction analysis (NVT X NV) and the number of variables whose levels
are to be computed (NVU). If NVT = NVU, all combinations are considered;
otherwise NVU < NVI. Format (2I2).

Card five indicates, by subscripts, the variables selected for analysis.
The number of values appearing should be NVT in format (20I2).

Card 6 is omitted if NVT = NVU. Otherwise it specifies, by subscripts,
the NVU variables to be computed. Format (20I2).

Cards 2-6 are repeated for each model. The deviations specified on Card 3 are doubled

for the least squares analysis. That is, the upper and lower limits considered for

each variable are the nominal values plus and minus twice the deviations given on

Card 3.

The program inputs to the example using the polynomial introduced as the perfor-

mance model are given in Table 4-2 and followed by the outputs in Tables 4-3 through

4-5,
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Table 4-2
Program Inputs for Polynomial (POLY) Example

Inputs (Card Image)

Simulation Analysis

@) 1697.
(2) 1POLY
3) 2 2 100
(4)  UNIFORM NORMAL LOG NORMAL EXPONENTIAL WEIBULL GAMMA
CHI SQUARE
EDGEWORTH  LAGUERRE

(5) .1000E 02 .2000E 00 X1 2

.5000E 01 .5000E-01 X2 2
(6) 1.0 0.5 1.0

Sensitivity, Worst-Case and Moment Analysis

@ 1POLY

(2) 2

(3) .1000E 02 .2000E 00 X1 2
.5000E 01 .5000E-01 X2 2

(4) 1.0 0.5 1.0

Interaction Analysis

(D 1

(2) 2POLY

(3) .1000E 02 .2000E 00 X1
.5000E 01 ,5000E-01 X2

(4) 22

(5) 12

BETA
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MODEL 1, POLY

INPUT CORRELATIONS

.500

INPUT CHECK
MODEL 1, PoLy

INPUT CORRELATIONS
. 608

DEPENDENT DATA LISTED

VAR. NAMES
X1
X2

VAR. NAMES
X1
X2

IN ASCENDING ORDER

I I/N POLY
1 .010  .6322E
2 .020  .6346E
3 .030  .6362E
4 .040  .6389E
5 .050  .6403E
6 .060  .6434E
7 .070  .6478E
8 .080  .6494E
9 .090  .6504E
10 .100  .6516E
11 .110  .6554E
12 .120  .6567E
13 .130  .6579E
14 .140  .6580E
15 .150  .6594E

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

LWWLLLLWLWLLWWWWWW

.390
.400
.410
.420
.430
440
.450
.460
470
.480
.490
.500
.510
.520
.530

Table 4-3
Simulation Qutput for POLY

NOMINAL VALUE

.10000E 2
.50000E 1

NOMINAL VALUE

.6735E
.6740E
.6740E
.6748E
.6750E
.6755E
.6758E
.6764E
.6774E
.6786E
.6786E
.6788E
.6790E
.6791E
.6799E

LWLLLLWLLLWLWWLWLWLWWLWLW

.99866E 1
.50019E 1

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

.770
.780
.790
.800
.810
.820
.830
.840
.850
.860
.870
.880
.890
.900
.910

DEVIATION
.200000E 0O
.500000E -1

DEVIATION
.20871E 0
.65881E -1

.6962E
.6981E
.6983E
.6986E
.7012E
.7013E
.7021E
.7024E
.7039E
.7040E
.7051E
.7056E
.7062E
.7067E
.7096E

WWwbbLbLwbbLWLwWLWLLWWWLW

DISTRIBUTION
NORMAL
NORMAL

DISTRIBUTION
NORMAL
NORMAL
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Table 4-3 (Continued)

16 .160 .6607E 3 54 .540 .6817E 3 92 .920 .7099E 3

17 .170 . .6612E 3 55 .550 .6820E 3 93 .930 .7113E 3

18 .180 .6614E 3 56 .560 .6833E 3 94 . 940 .7117E 3

19 .190 .6615E 3 57 .570 .6851E 3 95 .950 .7125E 3

20 .200 .6615E 3 58 .580 .6856E 3 96 .960 J147E 3

21 .210  .6634E 3 59 .590 .6858E 3 97 .970 +7158E 3

22 .220  .6637E 3 60 .600 .6858E 3 98 .980 .7167E 3

23 .230  .6647E 3 61 .610 .6860E 3 99 .990 L7272 3

24 .240  .6650E 3 62 .620 .6860E 3 100 1.000 .7288E 3

25 .250 .6659E 3 63 .630 .6863E 3

26 .260  .6660E 3 64 .640 .6864E 3

27 .270 .6661E 3 65 .650 .6872E 3

28 .280 .6676E 3 66 .660 .6882E 3

29 .290 .6678E 3 67 .670 .6892E 3

30 .300 .6692E 3 68 .680 .6893E 3

31 .310 .6693E 3 69 .690 .6893E 3

32 .320 .6696E 3 70 .700 .6903E 3

33 .330 .6704E 3 71 .710 .6904E 3

34 .340 .6706E 3 72 .720 .6906E 3

35 .350 .6711E 3 73 <730 .6933E 3

36 .360 .6715E 3 74 .740 .6933E 3

37 .37Qp .6726E 3 75 .750 .6951E 3

38 .380° L.6734E 3 76 .760 .6953E 3

MOMENTS POLY PERCENTAGE POINTS FOR POLY BY EDGEWORTH

FIRST .680057E 3 Z = 616.96093 F(z) = -.82690E -2
SECOND .437902E 5 Z = 627.47654 F(2) = -.11345E -1
THIRD -.243477E 5 Z = 637.99217 F(Z) = .88139E -2

FOURTH .503237E 8 Z = 648.50779 F(z) = .83527E -1

STD. DEV. .210316E 2 Z = 659.02342 F(z) = .21687E O
SKEWNESS  -.265701E -1 Z = 669.53905 F(z) = .36661E 0
KURTOSIS «262433E -1 Z = 680.05467 F(z) = .49822E O

VARTANCE - COVARIANCE MATRIX, ORDER 1 Z = 690.57030 F(z) = .63100E O
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Table 4-3 (Continued)

POLY

.468040 E3

N N N N N

i

701.98592
711.60155
722,11718
732.63280
743.14842

F(Z)
F(z)
F(2)
F(Z)
F(2)

.78309E
.91788E
.99259E
.10121E
.10086E

- H H O O O
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Table 4-4

Sensitivity, Worst-Case, and Moment Analysis Output for POLY

t n
FIRST AND SECOND PARTTAL DERIVATIVES (Y AND Y ) OF POLY WITH RESPECT TO X

PARTTALS

X Y (X-2DX) Y (X-1DX) Y (X+1DX) Y (X+2DX) Y Y

X1 .64284E 3 .66175E 3 .70055E 3 .72043E 3 .96986E 2 .79590E 1
X2 .67384E 3 .67740E 3 ,68460E 3 .68823E 3 .71995E 2 .78125E 1

ALL X AT NOMINAL, Y(X) = .68099E 3
STD DEV OF Y(X), .21425E 2

WORST CASE LIMITS
VALUE OF VARIABLE AT LOWER LIMIT AND AT UPPER LIMIT ,

X
X1 .96000E 1 .10400E 2 .10000E 2
X2 .49000E 1 .51000E 1 .50000E 1
WORST CASE LIMITS AND NOMINAL VALUE
POLY .63579E 3 L72779E 3 .68099E 3

INTERACTION CHECK USING 1ST AND 2ND DEGREE TERMS OF TAYLOR SERIES

POLY .63567E 3 .72766E 3
INTERACTION CHECK USING 1ST DEGREE TERMS OF TAYLOR SERIES
POLY .63500E 3 .72698E 3

GOODNESS OF FIT USING 1ST AND 2ND TERMS OF TAYLOR SERIES
VARIABLES Y(X-2DX) /Y (X) 1.-SENS 1.-SENS+NON LIN Y (X+2DX) /Y (X)

X1 .94397E 0 .94303E O .94397E O .10579E 1
X2 .98949E 0 .98943E O .98948E O .10106E 1

SENSITIVITY

LINEAR

.56967E -1
.10572E -1

NON-LIN
.93499E -3
.57361E -4

DX

.20000E O
.50000E -1

1.+SENS

.10570E 1
.10106E 1

1.+SENS+NON LIN

.10579E 1
.10106E 1
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Table 4=5

Interaction Analysis Output for POLY

VARIABLE NOMINAL VALUE DX
pal .10000E 2 .20000E 0
X2 .50000E 1 .50000E -1

CODED LEVELS OF THE VARIABLES X(I)

0-LOW LEVEL 1-HIGH LEVEL
ROW MOD-2 ARRAY OF VARIABLES
1 0 0
2 0 1
3 1 0
4 1 1

ACTUAL LEVELS OF X(I) AND CORRESPONDING PERFORMANCE VALUES

ROW X1 X2 POLY
1 .96000E 1 .49000E 1 .63579E 3
2 ,96000E 1 ,51000E 1 ,64995E 3
3 L10400E 2 .49000E 1 .71316E 3
4 ,10400E 2 .51000E 1  .72779E 3

COEFFICIENTS OF VARIABLES AND THEIR SENSITIVITIES

COEFFICIENTS SENSITIVITY
CONSTANT B( 0) = .68167E 3
X1 B( 1) = .96938E 2 .56938E -1
X2 B( 2) = .71480E 2 .10496E -1
X1 , X2 B( 1, 2) = .29087E 1 .85423E -4



4,3.2 ECAP and NASAP for PVA
The Electronic Circuit Analysis Program (ECAP) was developed jointly by IBM

and Norden Division of United Aircraft; Ref.4-16 is the basic reference for the
program. ECAP is very widely used for circuit analysis; it is available from IBM
for use on the IBM 1620, 7000 series, and 360 series computers, although not all of
these versions are officially supported by IBM [Ref.4-17]. It has been suitably
modified by other organizations for use on a variety of other computers and with
some valuable additional features for PVA.

In the versions of ECAP available .from IBM, the PVA capabilities include the
following [Ref.4-18]:

For dc analysis;

(1) partial derivative of voltage at a particular circuit node with respect
to a circuit parameter in a particular branch;

(2) sensitivity of a node voltage with respect to a branch parameter;

(3) worst-case solutions;

(4) standard deviation of circuit output variables;

(5) automatic parameter variation, which allows a parameter to be incremented
over a range of values with a circuit solution computed for each value.

For ac analysis:

(1) automatic parameter variation,.
Additional PVA capabilities which have been incorporated in ECAP by other organizations
include ac sensitivities and solution of the propagation-of-variance equation [Ref.4-17].
The Network Analysis for System Application Program (NASAP) has been developed
by NASA/Electronics Research Center in a cooperative effort involving about 20 users
of the program [Ref.4-19]. NASAP is unique among circuit analysis programs in that
it uses flowgraph techniques to analyze networks instead of matrix-oriented techniques.
Also, it manipulates circuit symbolic parameters instead of actual parameters until
the final step of the analysis. This symbol-manipulation feature has some interesting
ramifications, among which are the ability to calculate partial derivatives and
sensitivities symbolically [Ref.4-20].

In addition to the PVA capabilities noted above, NASAP incorporates an optimi-
zation procedure which eliminates from a circuit input parameters having less than
a preassigned amount of influence on circuit performance parameters; the procedure
is in effect a tolerance analysis [Ref.4-20].

NASAP was originally written in FORTRAN IV for use on the CDC 3600 computer;
it also is now in use on several other computers. Although reportedly available

from COSMIC [Ref.4-21], it does not appear in the July 1967 listing of COSMIC
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programs [Ref.4-22], However, it can be obtained [Ref.4-23] by contacting:

R. M. Carpenter

NASA/ERC

575 Technology Square
Cambridge, Mass.

Tel, 617 491-1500, Ext. 541
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5. Part Application Analysis

In part application analyses the operating stresses of the individual components
are determined and compared to the rated capabilities. In an electronic circuit, for
example, part stresses such as power dissipation of a resistor, peak reverse voltage
of a diode, and voltage across a capacitor are all tabulated and compared to their
electrical ratings. The concept of stress here is an extension of the concept of
mechanical stress applied in strength of materials analysis and is broadened to include
electrical, thermal, radiation and other potentially damaging effects that may jeopardize
the acceptable operation of a component. The purpose of the analysis is to insure that
actual component loads do not exceed the manufacturer's rated or user's derated capa-
bility of the component,

The significant application of computers in part application analysis is indirectly
through other types of analyses such as circuit, thermal and structural analyses. For
example, with circuit analysis programs such as ECAP, node voltages and branch currents
(hence branch component power dissipation) of electrical networks can be computed for
later comparison to rated conditions. The circuit analysis program NET-1 allows as
input the rated dc conditions of certain components, performs a comparison against
rated values as a part of the analysis, and prints out an alarm if a computed parameter
value exceeds the input rated value. Mechanical stress analysis is usually an inherent
feature in structural analysis programs,since the stress level in a structure is con-
cerned with the primary function of the structure.

The computer can serve as an aid to application analyses on system components
‘for any situation in which the component loads can be computed with an appropriate

model. Vol. V of this report series treats part application analyses in some detail.
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6. Failure Mode and Effects Analysis (FMEA)

This analysis task is approached in several ways. The common purpose of all
approaches 1s to determine what discrepancies can occur in a system,identify their
effects on system operation, and eliminate those that are more critical and more
likely to occur. A large portion of the analysis relies on engineering judgement
and is thus performed manually. Computers can assist, but the extent of applicability
depends on the approach taken and the nature of the system. FMEA remains the important
procedure for actually uncovering the system discrepancies. It is in fact one of the
most important activities in the total design for reliability process since it identifies
areas requiring action by other design activities. One of its important outputs is
the designation of the logié models for individual elements to be included in reliability
prediction calculations.

One of the simplest approaches to FMEA is: given a design configuration, each
of the components and materials comprising the design can fail or degrade via a number
of different modes. The failure mode analysis consists of nothing more than explicitly
identifying these modes. For a system composed of discrete components, this identifi-
cation involves merely proceeding through a parts list and deciding what modes of
failure are to be considered. There is a practical limit, of course, as to how many
failure modes of each part can be considered, and in fact a limited failure effects
analysis is performed on a subjective basis at this stage to aid in limiting the
number of modes considered.

For electronic circuits it is becoming fairly common to consider at least shorts
and opens between all terminal pairs of components. Typical modes define the extreme
discrete states of the components, It is possible to define in-between states, such as
discrete levels of resistance for a resistor which differ from nominal, but the re-
sulting analysis can quickly become unweildy if carried too far, especially when
considering devices as complex as a transistor.

When for FMEA the lowest level of breakdown is limited to complex subassemblies
(such as transmitters, power inverters, pumps, and engines) the failure modes become
much more difficult to define. If these subassemblies are required to perform in
sequences of operations, failure modes of the following types may be identified:

(1) premature operation,

(2) failure to operate at a prescribed time,

(3) failure to cease operation at a prescribed time, and

(4) failure during operation.

Within each of these modes there may be further modes to consider. For example,

failure of a power supply during operation may be evidenced by either no output
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voltage, loss of voltage regulation, frequency out of tolerance, or excessive voltage
imbalance between different phases.

The only aid provided by a computer in the failure mode portion of the analysis
is that of record keeping to eliminate manual drudgery. This role becomes more useful
when the records can be used as input to the failure effects analysis, which potentially
lends itself to more computer assistance.

The use of the computer in the failure effects portion of the analysis is
primarily in the role of function evaluation using performance models to compute
changes in performance due to particular failure modes. For example, considerations
of fatigue failure of a particular structural member will not alter the basic form
of the stiffness matrix but will modify the wvalue of certain parameters. Upon sub-
stituting the modified values into the computer program for solving these structural
equations, the computer can be used to evaluate the effect.

It 1s possible to extend certain performance evaluation programs to automatically
perform these calculations for all failure modes to be investigated. The NET-I network
analysis program [Ref. 6-1] does this upon input request for a limited number of ab-
normal modes of circuit voltage supplies and prints out the value of circuit perfor-
mance parameters for each. NET-I does not automatically consider failure modes such
as shorts and opens of circuit components; investigation of these would require
manually setting up a new run to be made for each mode.

Most circuit analysis programs e.g., ECAP which accept a topological input
description of the circuit and synthesize the circuit equations can be used to evaluate
failure effects, but computer run time can become excessive since the circuit equations
may have to be generated again for each run. Specifying an extreme failure mode such
as an open or a short of a component essentially changes the circuit configuration
and a completely new solution is required. A useful approximation to open or short
failures often used is to maintain the same circuit configuration and merely use
extremely high or low values of part parameters to simulate failures. For example,
an extremely high capacitance value can effectively simulate a short of a capacitor
for AC analysis but does not have the same effect on circuit equations as does a
short.,

The AMAP (Automated Failure Mode Analysis Program) circuit analysis program
fRef. 6-2] is one program which automates the failure effect analysis for d¢ circuits.
It repeatedly solves the circuit equations, computing and printing circuit node
voltages, for failure modes such as open and short for parts and shorts between all
node pairs. As described in the reference, AMAP includes only resistors, diodes,

transistors, power supplies and nodes. This automated approach to failure effects
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analysis can carry over effectively in other types of systems such as structures and
propulsion, but no programs are known which provide these capabilities.

"As mentioned earlier, there is a practical limit to the number of failure modes
of each component or material than can be considered, even with computers. As a
result, most failure effects analyses are limited to first-order effects, i.e., to
considering the effect of a single failure mode of one component at a time and ignoring
combinations. The AMAP program does include second order effects to a limited extent,
including open and short combinations between different terminal pairs of a transistor.

One of the major uses of the outputs of FMEA is identification of the models
for individual elements to be used in a reliability prediction analysis. For example,
the results can be used to decide whether a short or a particular resistor should be
included in the prediction as a failure or successful operation. Another use is to
aid in determining if there are any overstress conditions on circuit parts. The
identification of failure effects also assists in compiling a failure dictionary to
be used in fault diagnosis and test point allocation.

Another approach to FMEA is to apply the above procedure in reverse, i.e., to
define a degraded or failed mode of the system and look for those component and
material failures that can cause it. The approach is employed mainly for studying
the mission sequences of functions for large systems. In this approach the ex-
citation or '"'calling-up" of a function depends on the mode of operation of a
function in a prior time interval. Typically there is only one path through the

network for normal operation. Any other path corresponds to degradation or failure

Figure 6-1. Fixed System with Redundancy
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and will excite functions which cause the mission to be aborted, failed, or completed
in a degraded mode., Thus given a particular outcome or terminating mode for the
system, the analysis can search out those event combinations that can lead to it.

A third approach to FMEA is useful for systems with fixed configurations and
containing extensive redundancy. Consider the conventional system logic diagram shown
in Fig. 6-1. A first-order FMEA performed from this diagram is trivial since it was
required prior to diagram construction anyway. A second-order FMEA shows that com~
binations such as elements A and B and elements D, F, and H cause system failure.
When the redundancy gets very complex, the computer can assist in performing the
higher-order FMEA.

References
6-1, Malmberg, A. F.: NET-1 Network Analysis Program. Proceedings 1965 Symposium
on Reliability and Quality Control, pp. 510-517.
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7. Reliability Prediction

A basic definition of the reliability of an equipment is the probability that the
equipment successfully performs its intended function for a specified duration while
operating under certain environmental conditions. Reliability prediction is the practice
of using mathematical models to estimate this probability or related measures such as
probability of failure, life distributions, or mean—time-to—failure; In addition to
these estimates of system reliability alone, prediction of more complex measures of
system worth related to reliability can be made. For example, it may be desired to
optimize system reliability under cost ‘constraints; a computer program which accomplishés
this optimization is discussed later. Rarely are the models or statistics sufficient
to obtain an estimate with sufficient accuracy to have meaning in the absolute sense.
However, the results do frequently have meaning as a basis for selecting the best of
several candidate designs, and the practice of predicting system reliability is now
found in almost all system development programs.

Models and techniques for prediction are described in Vol. IV - Prediction of
this series; we here emphasize the automation of the prediction analyses.

Reliability predictions are performed both on individual items and on the combina-
tions of items forming higher levels of assembly up to and including the largest of
systems. For individugl items the analysis is usually so simple as to have no need
for a computer. Computers do find considerable application in the analysis for com-
bined items.

The common basis for all reliability predictions is the logic which defines the
events of interest. This logic comprises the system model; not surprisingly it is
called the prediction model. The event of the system being in a particular state
(in simplest form the state is either success or failure) is the logic combination
of other events associated with states of system subassemblies, inputs to the system,
loads on the system, and/or system environmental conditions. In concept the logic
comprising the preciction model can allow any number of different states of a part;
most analyses of complex equipment employ simple two-state models (success vs.
failure) to limit analysis complexity.

The basic flow of procedures in reliability prediction is shown in Fig. 7-1.

A major milestone is the prediction model, from which either of two basic approaches
may be followed. The approach illustrated by the upper path leads to a prediction
equation which expresses the probability of system success or a related measure as

a function of individual element probabilities., One of the simplest roles of com-
puters in reliability prediction is to use such an equation programmed for estimating

system probabilities and computing sensitivities of system probabilities to changes
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Figure 7-1. Reliability Prediction Process

in probabilities of subsystem events. This is especially appropriate when the pre-
diction equation is derived manually and is too complex for manual.solution. A
computer application which implements the lower path in the figure is the use of the
prediction model for simulating the system by Monte Carlo methods to estimate the
probability of system success or other reliability parameters. Computers also can
be used to cover various combinations of the steps illustrated in the figure.
7.1 Developing the Prediction Model

A prerequisite to the prediction analysis is a preliminary analysis of the equip-
ment and its operational profile to establish mission functions, operating times and
sequences, and environments. A failure modes and effects analysis as described earlier
is an important part of the preliminary analysis, particularly for complex systems.
An output of the FMEA is identification of the logic models to be used to single elements
in the model for the prediction analysis, which is next established. The goal is to
obtain a logic representation which relates reliability events of interest (such as
system success) to the events that cause them. This logic can be developed in two
principal ways as described below.

When a system is a fixed configuration or when the event of system success during

a particular phase of system operation is concerned only with the fixed system
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configuration which exists during this phase, a logic diagram is constructed which
typically reveals the various logic elements operating in series or parallel. This
diagram usually is derived manually from functional diagrams, schematics, special
analyses, and general knowledge of system operation. Forms of logic relationships

that can be used in prediction models are series-parallel diagrams, tree diagrams,
truth tables, and state-space diagrams. Although computers are not suited to producing
the prediction model itself, they can assist in performing certain of the analyses re-
quired to determine what the reliability logic diagram should be; for example, the

ECAP program described earlier can be used in FMEA.

The second direction in which the model-building can proceed is to establish the
logic required to analyze the total system throughout the total operational profile
where the system configuration or the environment (or both) can be changing. The
logic must then relate the reliability events that occur in sequence, where each
event may represent some characteristic of overall functional operation of a different
system configuration. This type of representation leads to a combined functional and
logic mode; this type of model will be called an event sequence prediction model. The
development of this combined diagram genmerally is done manually.

An extension of the first approach to developing a prediction model is to consider
the system repairable so that different states may be introduced. This leads to the
state-space diagram approach, but here again, the model-building task is primarily
a manual one.

All of the above approaches to prediction modeling are described in detail in
Vol. IV ~ Prediction of this series.

7.2 Making the Reliability Prediction

It is noted here that the prediction computations are usually of the simpler
types,i.e., failures of individual elements are assumed independent, and the failure
probabilities of the individual elements are combined according to the simple series
and parallel logic for a fixed configuration. An individual element probability is
typically expressed as a discrete probability or as a failure rate with an adjustment
factor (called a K factor) based on the environment.

Having derived the reliability prediction model, its use depends on the approach
taken for prediction. One much-used approach is (1) derive a Boolean algebraic ex-
pression relating the events, (2) apply the fundamental laws of probability to this
expression to get a prediction equation which expresses the probability of the out-
come events in terms of the probabilities of the individual events, and (3) apply

the prediction equation via the computer.
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Another approach used frequently is to use the prediction model as a basis for
Monte Carlo simulation of the system. This requires assigning appropriate numbers
to represent the probabilities of each event. For example in Fig. 7-2, the event A
(which is the event that element A works) is assigned probability P(A) = 0.68 and
event A (the complement of A or the event that element A does not work), probability
P(A)= 1-P(A) = 0.32. The computer then starts a path searching process starting with
element A. A random number between O and 1 is obtained from a random number generator
routine. The computer is programmed to sequence to element B if the number is less
than 0.68 and to element D if greater than 0.68. Whichever element is called up is
treated in like manner using the appropriately assigned probabilities for the events
associated with the elements, and thence through the network. When a terminal event,
either H or G in this case, is reached it is merely tallied as a hit. Repeated trials
of this procedure, starting each time from element A, will yield scores for all possible
outcomes., With enough runs, the ratio of the tally for a particular outcome to the
total number of trails will provide an estimate of the probability of the particular
outcome occurring. The validity of this estimate depends on the validity of the
numbers representing the probability of occurrence of each event. This approach is
well suited to complex systems where system events occur in sequence and may represent

different system configurations.

Terminate
B C T F
B C F H
c F
B
Start
2 A
A
E
Terminate
A—. D D E E G
~
_1 5

Figure 7-2, A Simple Prediction Model
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As noted earlier, it is possible to include more than two states for each element
uéed_in the model. For example, in addition to considering only nominal and excess
pressure in booster engines as events leading to normal launch operation and escape
tower :ocket ignition respectively, low engine pressure might be another state,
causing engine shutdown. The only limit on complexity of the prediction model is
computer size and acceptable computing time. However, logic diagrams that appear
simple can be deceptive in the amount of computing time they require in performing
the path searching . Simulation of complex systems is always costly, and when many
outcomes are possible it may take hundreds of runs to realize each at least once.
Checking out a program of this type is difficult because discrepancies can be due
either to system logic or to the program. The guiding rule here is to start simple,
with only several elements to represent the total system, and expand to include more
logic detail as required.

7.3 Reliability Prediction Programs

Numerous computer programs for reliability prediction have been described in the
literature [Refs. 7-1 to 7-14]; relatively little is known about their availability
and suitability. Table 7-1 lists some of these programs. Two reliability prediction
programs have been developed in connection with this report preparation. These pro-
grams with examples of their uses are discussed.

7.3.1 A Computer Program for System Reliability

One of the difficulties associated with obtaining reliability estimates for
complex systems is that of evaluating precisely a prediction equation which expresses
all possible events of interest. One way to alleviate this difficulty is to obtain
prediction equations which provide bounds on the system reliability rather than the
reliability itself. A method for doing this, on which the computer program given in
Appendix B and discussed below is based, is developed in Vol. IV - Prediction of this
report series. For the convenience of the reader that development is reproduced here.

In the last few years several papers have been written on the subject of relia-
bility approximations and bounds by using the concepts of success paths (or tie sets)
and cut sets. Further discussion of bounds and approximations are given by Messinger
{Ref. 7-15]. A few of the more important results are given here.

The success probability of a system, typically called the system reliability, is
defined as the probability of successful function of all of the elements in at least
one tie set or the probability that all cut sets are good. A tie set or success path
is a directed path from input to output as indicated in the simple system in Fig. 7-3.
The tie sets or success paths are 2, 5; 1, 3, 5; and 1, 4, 5, respectively. A cut
set is a set of elements which literally cuts all success paths or tie sets. One

is normally interested in the minimal cut set; i. e., the smallest or minimal set
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Program Code
CRAM

RESCRIPT
RP-RI
RP-LG

RP-MEL

RP~AF
SOAR~II
RAPID

ARMM
RP-NAA

SFRS-W
R#14~SBC
R#16~SBC

MARSEP

Table 7-1

Programs in the Reliability Prediction Area

Program Description

Computerized Reliability Assessment Method

Not a specific program but a reliability-oriented
programming language for prediction

Reliability Prediction of systems by combining
failure rates

Reliability Prediction of systems by combining
failure rates

Reliability Prediction of systems by programmed
prediction equation

Reliability Prediction and Crew Safety Analysis
for complex aerospace systems from input logic
models

Organizations (Originator

Reliability Prediction program for computing mission Martin-Baltimore/?

success and crew safety for Gemini Launch Vehicle;
prediction equations required

Reliability Prediction .y simulation

Special purpose program for prediction of Apollo
mission success by simulation

Reliability Analysis and Prediction Independent
of Distributions '

Automatic Reliability Mathematical Model

Reliability Prediction of space vehicle by
Monte Carlo simulation

Simulation of Failure-Responsive Systems

Reliability program; computer success probability
several components; different distributions; in-
cludes correlation between lifetimes

Reliability program; computer system reliability
estimates of components

Mathematical Automated Reliability and Safety
Evaluation Program

or User/Sponsor) References
ARINC/NASA 7-1
Computer Concepts, Inc./? 7-2
Radiation Inec./? 7-3
Lockheed-Georgia/? 7-4
Marine Engineering Lab. 7-5
Grumman/NASA 7-6
7-7
Air Force Institute of 7-8
Technology
GE-Tempo/NASA 7-9
Lear Siegler/NASA
NAA/? 7-10
NAA/NASA 7-11
Westinghouse/NASA 7-12
Service Bureau Corp. 7-13
Service Bureau Corp. 7-13
Mathematica/Sandia 7-14
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Figure 7-3B. Reliability Graph Corresponding to Functional Logic Diagram

of elements such that the elimination of any one element would no longer make it a
cut. This is because a nonminimal cut set corresponds to more element failures than
are required to cause system failure. In the above example the minimal cut sets are
1, 23 2, 3, 4,; 5. Note that 1,5 is not a minimal cut set since 5 is already a cut
set and is a subset of 1, 5. A cut set cuts the line of communication between input
and output. A cut set is good if at least one of its elements is operative. The
system failure probability or system unreliability is the probability that all tie
sets are bad (a tie set is bad if at least one element fails) or the probability that
at least ome cut set is bad (that is, all its elements are bad). Hereafter, cut set
will usually mean minimal cut set.

Let Ti’ i=1l,..., I denote the tie sets, I in number; and Cj, j=1l,...,J
denote the cut sets, J in number. The above statement for system reliability R can

be expressed as follows.

R P{Tl + T, + ... + TI} = P{at least one tie set is good} (7-1)

2

or

"
]

P{Cl *C, .. Cj} = P{all cut sets are good}. (7-2)

2

72



Equivalently the unreliability is expressed as

1~-R = P{T1 e T, «os TI}= P{all tie sets are bad} (7-3)

2
or

1-R = P{E1 +C, ... + EJ}= P{at least one cut set is bad}. (7-4)

2

The above are exact formulas for the system reliability and unreliability. Bounds

can be obtained by using the basic probabilistic inequalities given below.

R = P{Tl + T, + ... + TI} <z P{Ti}, (7-5)

2

R

P{Tl + T, + ... + TI} <z P{T.} - & P{T. T. },etc. (7-6)
1 1

2 . i
11<12 1 72

Thus an upper and a bound RUl lower bound RLl to the reliability are respectively

z P{Ti} (7-7)

Ru1
Rp1

T P{Ti} - T P{Ti T, }. (7-8)

In the same manner another upper bound is obtained,

R, =ZPT, }- & PRI, T, }+ : P{T. T, T, } (7-9)
2 1 i <i Hht i <i <i 1 213
112 11213

The summations are over all possible combination of the subscripts taken 2 at-a-time,
3 at-a-time, etc.
Similarly the inequalities (7-5) and (7-6) can be applied to the cut-set form

of the equation for unreliability (7-4) to obtain

1-R 2zp{C,}

3
or
> 1 - xp{C.} = -

R>21 ZP{Cj} R, (7-10)

and by using two terms
R<1-zP{C,}+ ¢ ©P{C,cC,}= -11
< 1+ 1 P c }=Ry (7-11)

31%3, 172

Example: Consider the reliability graph given in Fig.7-3. Assume independence between
items and let the probabilities of success for each of the items be p; = 0.93, Py =
0.86, Py = 0.92, P, = 0.95, Py = 0.98. The probabilities for the ties and cuts are

as follows:
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P{Tl} = P{2 5} = 0.8428
P{T,} = P{13 5} = 0.8385
P{T3} = P{1 4 5} = 0.8658,

and
P{c;} = 1- P{1 2} = 1-.0098 = 0.9902
P{C,} = 1-P{234} = 1-0.00056 = 0.99944
p{Cg} = 1-P{5} = 1-0.02 = 0.98.

Upper and lower bounds for the reliability are given by using Eqs. (7-7), (7-8),
(7-9), (7-10), and (7-11), respectively,

<
P{Ti} > 1 (not useful as RUl <1.)

Ru1

RL1 = 0.843 + 0.838 + 0.866 -~ P{1 2 3 5} - P{1 2 4 5} - P{1 3 4 5}
= 0.2848
RU2 = 0.2848 + 0.6850 = 0.9698 = R (This result should be equal to

the system reliability)

0.96964

&

1 - P{Ej} = 1 - 0.03036

1 - 03036 + 0.00024 = 0.96988.

g

As stated by Messinger [Ref.7-15] the bounds based on the cuts sets are best in
the high reliability region and those based on the tie sets are best in the low
reliability region. Hence the bounds RL2 and RU3 are the preferred bounds in the
above example and-RU2 in this case saves no computation as it is the exact probability
of system success, as there are only three tie sets and the bound uses all combinations
of tie sets up to and including three sets.

In more general problems in which there are J cut sets the number of terms to
be obtained in the lower and upper bounds computations are J and J(J-1)/2 respectively.
This is compared to 2J—1 terms obtained by expanding either Eq. (7-1) ox (7-4) using

tie sets or cut sets respectively.

‘Program Description

The bounds for system reliability, previously discussed, are obtained from cal-

culations which are based on cut sets. This program calculates upper and lower bounds
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using the probabilities of success of each item in the system. The program is written
in FORTRAN. A flow diagram is given in Fig. 7-4;a program listing is in Appendix B.

Input simplicity is one of the features of this program. The user need only
supply the success probabilities and a precedence list for each item in the systemf
The precedence is established by feeding to the computer via cards a list of items
responsible to the i-th item. Table 7-2 shows an example corresponding to the relia-
bility logic diagram in Fig. 7-3.

The algorithm is not complex, but is rather a series of simple steps. These
steps in order are: read the precedence list, develop the tie sets, develop the
cut sets, and calculate the bounds.

The precedence list is converted to the success paths or tie sets by a subroutine
called PATH.* The arguments are: N, number of items in the system; NP, number of
success paths found; IP, the array of the success paths. The precedence list is read
by the PATH subroutine; its format is discussed under the input description. After
being printed the paths are converted to a Boolean array of zeros and ones,and the
cut sets are developed by the procedure given below. When the cut sets are available
the bounds are calculated by a procedure in Ref. 7-15.

Generation of Cut Sets

A simple procedure using Boolean logic is used for obtaining a matrix identifying

the minimal cuts of the system from one containing the paths. Let the path matrix be

Table 7-2

Precedence List for Program Input

ITEM PREDECESSORS CARD CODE
1 IN -1
2 IN -1
3 1 1
4 1 1
5 2, 3, 4 2, 3, 4
OUT 5 20

*
This algorithm was obtained from Naval Applied Science Labs of Brooklyn, N. Y.

5



Read the number of elements and the pro-)
ability of success of each

Call Pat ( )
Subroutineg T PA?E___

Read the precedence
list for each element
and determine the
paths in an array
called IP

Do a matrix

"multiplication"
using the logical| ———-- Return

"OR" statement to
calculate IPP

Comment: The paths are determined

by element number in reverse order;
therefore, the program corrects the
order for output purposes and forms
a Boolean matrix whereby the paths

L are the rows.

Determine the simpl
and double element
cuts by looking at
IPP array

Determine triple
element cuts by
performing the
"OR" operation
on all possible
triple products

Calculate and printout
bounds by adding terms
starting with lower
bounds

Figure 7-4., TFlow Diagram for Computer Program——Bounds for Reliability.
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Py 10101
P = |p| = |01001f,
Py 100 1 1

where the paths are Py = 1, 3, 5; Py = 2, 5; and Py = 1, 4, 5, respectively. Now
consider the column vectors 1, 0, 1; 0, 1, 0; etc. of the path matrix P. For a
single element to be a cut, it must be in each path; i. e., its column vector in P
must be the unit vector (1, 1, 1). Note that element 5 is the only element which is
contained in all paths; hence 5 is the only single element cut. In general, if Pc
denotes a column vector of an n-path matrix, then for

P, = 1, for all i=1, 2,...,n,

i

the corresponding element c is a single element cut. If PCi = 0 for some i in each
path then there are no single element cuts and one must proceed to look for two
element cuts.

For two element cuts consider for c # d

where the "+'" indicates the logic sum or union. If

Pc, + Pd. = 1, for all i=1,2,...,n,
i i
then elements c¢ and d form a two element cut.

This procedure continues until all possible cuts of order 1, 2,..., n have been
exhausted or until only unit vectors are obtained in the vector unions as described.
At each stage all the nonminimal cuts are eliminated by using the following approach.
After a possible cut of order M has been identified, it is checked against all cuts
of order M-1, M-2,..., 1 by using Boolean logic for intersection, i.e., the AND
operation, for the multiplication of two vectors; if the possible cut contains a
cut of smaller order the vector product would be equal to the order of the smaller
cut. All cuts are eliminated for which this vector product as defined is equal to
the order of the smaller cut.

The above steps describe how the program identifies minimal cuts, even to the

"OR" logic used to form the vector union.
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Input and Program Limitations

There are three basic inputs to the program. The input variables are N, the
number of items in the system, PROB, the probabilities of success of each item,
IACTIV, the i-th item, and IPRED, the item(s) immediately preceding the IACTIV item.

The limit on the number, N, of items is 20 not including the end points; for N
the format is (I5). There is no limit on PROB; however, each item should have
specified a probability of success; format is (8E10.4).

IACTIV and IPRED are variables associated with the precedence list. TACTIV
is the item actively under cqnsideration, and IPRED is a vector of items that precede
the item TACTIV. If the item TACTIV is preceded by the input point IPRED is the single
number -1, and if succeeded by the output point it is the number 20. TACTIV may be
any number up through 20; the IPRED vector may have at most 9 numbers. There will
be N+1 input cards, one for each element in the logic model and one for the output
node ; the input element format is (10I5).

Output

The output is brief and easily read. Input probabilities are printed and followed
by the tie sets and cut sets.

Since the calculation for bounds is done by adding terms to a series with each
new term resulting in a new bound, either lower or upper, the bounds are given at
each step with the appropriate last term shown. For small systems the exact system
reliability is calculated before the program is terminated.

Example: The example in Fig. 7-3 is used.

The path matrix is given by

1 2 3 4 5 Paths
1 01 01 1,3,5
P = 60 1 0 0 1 2,5
1 0 01 1 1,4,5
and the cut matrix by
1 2 3 4 5 Cuts
0 0 0 0 1 5
c = 1 1 0 0 O 1,2
01 1 1 O 2,3,4
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The three cuts are thus 531 and 2; and 2,3, and 4. The upper and lower bounds are
obtained as indicated in the previous discussion. The program results as shown in

Table 7-3. have been retyped from the computer printout.

Table 7-3

Bounds for System Reliability Example

CIRCUIT CONTAINS 5 ELEMENTS

ELEMENT PROBABILITY
NUMBER OF SUCCESS
1 .9300
2 .8600
3 .9200
4 .9500
5 . 9800

TIE SETS OR SUCCESS PATHS ( 3)

PATH ELEMENT NUMBERS

CUT SETS ( 3)

5
1
4
LOWER BOUND IS .96964E O LAST TERM .30361E -1
UPPER BOUND IS .96988E 0 LAST TERM .24641E -3
LOWER BOUND IS .96988E O LAST TERM .78407E -6

SYSTEM RELIABILITY .98988E O
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Figure 7-5. System Diagram for Bounds Program Example 2

Example 2
The system shown in Fig. 7-5 is used; it is a relatively complex series-parallel

network. The input to the system is at the left of the figure. As can be seen from
the figure, there are many possible success paths through the system, and hand calcu-
lation of system reliability would be at best very tedious. The reliability of each
element is given in Table 7-4. As required by the program, element failures are
assumed independent. The bounds program printout follows. As can be seen from the
last two lines of the printout, the program has bounded the system reliability. Since
the upper and lower bounds have converged to the same value, 0.97726, this value is
the system reliability to 5-place accuracy.
Table 7-4

Reliabilities of Elements in Fig. 7-5
El. No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rel. .80 .80 .90 .8 .75 .87 .82 .82 .89 .88 .85 .85 .85 .75 .70 .70
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Table 7-5

Program Printout for Example 2

RELIABIT LI

8000
.8000
9004
+8500
7500
.8700
8200
,8200
+8900
8800
.8500
8500
.8500
.7500
L7G0u
. 7000

TIE SETS UR SUCUESS PATHS € 55 )

PATH

WOONOTIWNM

ELEMENT NUMBERS

T e

S DAL D D

7
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7
14
14
10
10

8
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Table 7-5 (Cont'd)

iy 1 4 8 9 12
11 1 4 8 9 13
12 1 5 14 15

18 3 6 14 15 -
14 1 5 14 16

15 3 6 14 16

16 1 5 10 11

17 3 6 10. 11

19 3 6 10 12

20 1 5 10 13

21 3 6 10 13

22 1 5 7 9 11
23 3 6 7 9 11
24 1 5 7 9 12
25 3 6 7 9 12
26 1 5 7 9 13
27 3 6 7 9 13
28 2 4 14 15

29 2 4 14 16

50 2 4 10 11

31 2 4 10 12

32 2 4 10 13

33 1 5 8 9 11
354 3 6 8 9 11
) 1 5 8 9 iz
36 J 6 8 9 12
37 1 5 8 9 13
38 3 6 8 9 13
39 2 5 14 15

a4 2 5 14 16

41 2 5 10 11

42 2 5 10 12

43 2 5 10 14

44 2 4 7 9 i1
45 2 4 7 9 12
46 2 4 7 9 13
47 2 4 8 9 11
48 2 4 8 9 12
49 2 4 8 9 i3
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Table 7-5 (Continued)

590 2 5 7 9 11

51 2 5 7 9 12

52 2 5 7 9 13

%3 2 5 8 9 i1

54 2 5 8 9 12

55 2 5 8 9 13

CcuUT SETS( 1V )

i 1 2 3

2 1 2 6

3 3 4 5

4 4 5 ()

5 9 10 14

6 7 8 10 14

7 9 10 i5 16

8 11 12 13 14

9 7 8 10 15 16
LUWER BQUNL IS ,9752¢E 0 LAST TERM ,24782E
UPPER BOUNU IS ,97738E 0O LAST TERM ,21627E
LOWER BOUNU IS Y7728 0 LAST TERM -,14357E
UPPER BOUNU IS ,97726E 0 LAST TERM  ,33038E
LUWER BOUNL 18 97726 @ LAST TERM ,64429E



7.3.2. Reliébility Cost Trade-Off Analysis Program
The REliability Cost Trade-off Analysis (RECTA) program obtains an optimum con-

figuration for a system containing spare, active and standby components. The system
configuration initially contains no redundancy involving identical elements, but may
have redundant elements with different failure-rate characteristics. This program
combines some of the features of those described in Refs. 7-16 and 7-17. The program
is listed in Appendix C. ‘

The main feature of the program is a subroutine which calculates the reliability
of an element containing:

(1) n identical active paréllel items, at least ng of which must operate,

(2) m identical spares, and

(3) r identical standby redundant items.
The computation assumes independence and the exponential failure time distribution.
Volume IV ~ Prediction of this series contains a complete description of the procedure.
The system reliability model gives the probability of successful operation of the
system in terms of the element reliabilities. The system reliability is calculated
by a model supplied in a subroutine by the user. The user also supplies indicators
for each element for the types of redundancy he wishes to consider ; a one (1) indicates
that the particular form of redundancy is permitted, and a zero (0) indicates that no
items of the particular redundancy type may be added.

One additional feature of the program is the handling of majority voting logic.
An upper limit is supplied as the indicator input value. The items will be incre-
mented in steps of 1, 3, 5, ..., N where N is the limit provided by the user. An
example of majority voting is for 5 items in an element, at least 3 of which must
work.

Starting with the initial system configuration, all possible single item addi-
tions (two items in the case of majority voting elements) are made and the increase

in the system reliability is obtained for each configuration by the element relia-

bility subroutine and the subroutine supplied by the user for the computation of the
reliability of the system. The increase in cost is also computed for each configu-
ration using the input cost information. The ratios of the increase in reliability
to the increase in cost are computed for each possible alternative as specified by
the indicators. The redundant item yielding the greatest ratio is the one selected
for addition and the procedure is repeated for the next step starting with the new

*
configuration. The program continues until a convergence criterion, supplied by

This algorithm yields an incomplete undominated sequence of optimal solutions in
the case of a serial system initially. In the case of nonserial systems the procedure
may not yield an optimal sequence of solutions although it would be expected to yield
near optimal configurations. See Ref. 7-l8concerning this point for serial systems.
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the user, has been satistified. For example, it may continue until the increase in
reliability is less than 0.001.

By virtue of the indicators a feature of this program which is not obvious is ~
that it can be used for a spares allocation procedure based on either one of two
criteria:

(1) minimize stockout probability subject to a given cost, or

(2) maximize system reliability subject to a given cost.

In the latter case the system configuration is used in the reliability computation
whereas in the former the elements are considered to be in series.

Input Description

The input is straightforward with one optional input. A brief explanation is
given for each input card and its variables; these are followed by an example.

The first two cards identify the system being analyzed with the first card
having two system parameters NEL and CONVG. NEL is the number of elements in the
system and CONVG is the system reliability convergence criterion. When the increase
in reliability is less than CONVG the program branches to read new data. The second
card has an identification for the problem being run; all 80 columns may be used and
the message is not restricted as to type of characters.

The information for each element is next read in the order specified in the

system model. The element parameters are defined in the following table.

Table 7-6
Input Card Variable Names
Variable Identification
Card 1 TIME Length of mission
FRATE Failure rate
RELSW Switch reliability
ELCST Active item cost
SPCST Spare cost
SWCST Switch cost
RSCST Redundant standby cost
NO Minimum number of items necessary

for operation

Card 2 IND Indicators of type of redundancy
permitted
INPRM Initjal number of items in the
system.
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The option mentioned above concerns the variable IND which may indicate majority
voting. If this is desired an upper limit is inserted as the indicator. The program
will eliminate the particular variable from consideration when it has built up to the

specified limit. The majority voting applies to active items only.

Table 7-7
Example of Input Cards
9 .1000E-02

MAJORITY VOTING LOGIC WITH REDUNDANT STANDBYS IN THE LAST TWO ELEMENTS
.1000E 03 .5130E-03 .9900E 00 .2000E 01 .2000E 01 .2000E 00 .2000E 01 1

3 0 0 1 0 0

.1000E 03 .5130E-03 .9900E 00 .2000E 01 .2000E 01 .2000E OO .2000E O1 1
3 0 0 1 0 0

.1000E 03 .5130E-03 .9900E 00 .2000E 01 .2000E 01 .2000E 00 .2000E 01 1
3 0 0 1 0 0

.1000E 03 .5130E-03 .9900E 00 .2000E 01 .2000E O1 .2000E 00 .2000E 01 1
3 0 0 1 0 0

.1000E 03 .1054E-02 .1000E 02 1
3 0 0 1 0 0

.1000E 03 .1054E-02 .4000E 01 1
3 0 0 1 0 0

.1000E 03 .1054E-02 -4000E 01 1
3 0] 0 1 0 0

.1000E 03 .6931E-02 .9900E 00 .1000E 03 .1000E 03 .1000E 02 .1000E 03 1
3 0 1 1 0 0 ‘

.1000E 03 .2877E-02 .9900E 00 .3002E 02 .3000E 02 .3000E 01 .3000E 02 1
3 o 1 1 0 0

Qutput Description

Initial values of the parameters and other pertinent information about the system
cost are printed first for identification. The initial reliability is calculated
and printed for each element separately. This is followed by a summary of the element
information and the system reliability and cost for a system consisting of no
redundancy.

The iteration begins by printing the element reliability with one item added
where designated by indicators. One of these additions (spare, standby, or active
parallel) is selected for the optimum configuration with respect to reliability and
cost. The reliability of this same element is calculated with one additional item of

redundancy of each type permitted. The ratios of increase in reliability to increase
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of cost are compared for this element and others calculated earlier for the optimum
configuration at this stage. When the optimum is found the information for this
step 1s printed and the program proceeds to the next step. The program repeats the
above procedure adding one redundant item at a time to a selected element until the
convergence requirement is met.

The 3 major steps in RECTA are summarized below.

(1) 1Initial step: data is read and the reliability is calculated for each
element at its initial state. The initial system reliability and cost are
also calculated.

(2) 1Intermediate step: each item of each element that is allowed to vary is
incremented separately and the increases in reliability and cost of the
system are calculated.

(3) TIteration loop: the loop begins by choosing the configuration generated
in the intermediate step that yields the best cost-reliability trade-off.
The item that is added to the system is then replaced in the intermediate
state by its next increment; thus, the intermediate state always is one
step ahead of the system configuration.

The program continues to query the intermediate values and add components until

the system reliability satisfies the convergence criterion.
Example
This example is a simplified block diagram of a computer containing nine (9)

blocks (elements) assumed to be in series logic, as shown in Fig. 7-6. All elements

—

Figure 7-6. Simplified Computer Block Diagram for RECTA Example
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Table 7-8
RECTA Program Example

RELTABILITY COST TRADE-OFF ANALYSIS (RECIA)

MAJORITY VUTING LOGIC WITH REDUNDANT STANDBYS IN THE LAST TW0 ELEMENTS

NUMBER OF ELEMENTS 9
IMPUT INFUKMATON
FAILURF SwiTECH #* L' TEMS CooT #
ELEMENT  TImME RATE RELIAS, ALTiye  SPARE  STANDBY  SwlTCH
1 100. .00051 .99000 2.00 2,00 2.00 +20
4 100, .000%1 «99000 2.00 2.00 2.0V 420
5 100, 00105 0.00000 10.00 0.00 0.00 000
6 i0u. «00105% 0.00000 4.0U 0.00 0.00 0.00
7 100, «0J105 0.00000 4.00 0.00 f.0U 6-00
8 100, 00693 +99000 1u0.00 100,00 160.0V 10.00
9 10U. 00288 «990490 S$0.00 30.00 30.00 $.00

I“ITIAL SYSTEM CONFIGURATIOUN
" INT T atL I TEMS e u @ I NDI1CATURS #

ELEMENT  AUTIV: SPARES STANDBY » ACTIVE SPARES STANDBY
1 i 0 0 3 0 8
2 1 n 0 3 n i)
3 i ] 0 K] 0 8
4 1 n 0 3 0 0
o) L 0 0 3 0 i
6 1 0 0 3 0 f
7 1 0 0 3 0 i
8 i 0 i} 3 ] 1
9 1 0 0 3 ] i
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Table 7-8 (Cont'd)

RELTABILLITY =SYIMATES FOR ELEMENT 1 CONIAINING

IDENTICAL 1TeMS [N PARALLEL 1
MINIMUM NUMBER OF [1gMS FOR OPERATION 1
IDENTIUAL SPARES 0
IDENTIUAL 1TeMS IN STANDBY ReDUNDANCY 0
SWITCH RELIAGILITY «9900
FAILURE KATE <0005
TIME 100.0

RELIABILITY FOr FIXED INACTIVE REDUNDANCY

STANDuY ReL .,
] +949993%E 0

ELEMENT RELIABILITY ,949993E 0

IVITIAL STEP

SYSTEM UONFIGURAT]ON

L I TEMS »

ELEMENT  ACTIve SPARE STANDLBY RELIABILLITY
1 1 0 i « 949994
2 1 0 0 « 949993
3 1 0 (] 194999
4q L 0 0 949993
5 1 0 0 899963
6 1 ] 0 899964
7 1 1] 0 LB99Y64
) i ) 0 500028
9 1 0 0 .749987

SYSTEM RebLIASILITY 1222636
STSTEM cusT 156.00
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Table 7-8 (Cont'd)

RELIABILITY eSTIMATES FOR ELEMENT 9 COUNIAINING

IOENTICAL I1TeMS IN PARALLEL 3
MINIMUM NUMBER OF JTEMS FOR UPhRATION 2
INDENTICAL SPARES 0
IDENTICAL IT:=MS IN STANDBY RtDuNUANCY )
SWITCH ReELIASILITY .9900
FAILURE RATE .0029
TIME 100,0

RELTABILITY FOr FIXEL INACTIVE REDUNDANCY

STANDGY REL .
U .843731F O

ELEMENT RELIABILITY ,B43731E b

RELIABILITY cSTIMATES FOR ELEMeNT 9 CONTAINING
IDENTICAL |TcMS [N PARALLEL 1
MINIMUM NUMBER OF 1TEMS FOR GPERATION i
IDENTICAL SPERES 8
IDENTICAL ITeMS N STANDHY RcDBUNDANCY 1
SWITCH RellAclILITY 9900
FAILURE RATE .0029
TIME 100,0

RELTABILITY FOx FIXED INACTIVE REDUNDANCY

bTAIVDDY RCL.
U «749987E 0
i «965755E U

ELEMENT rELIABILITY ,963593E U
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Table 7-8 (Cont'd)

StgP 1
SYSTEM CONFIGURAT]ON
. I TEMS L
“ ELEMENT ACTlvc SPARE STANURY RELIABILITY
1 K] 0 0 992744
Z 1 U 0
$ 1 U 0
4 1 U 0
% i 0 0
[ L U 0
7 1 U 0
8 1 U ]
9 1 0 0
SYSTEM RELIASILITY . 232655
_______ SYSTEM cusT _ _ _ _  _160.00
SIgP 14
SYSTEM  CUNFIGURAT]ION
* 1 TEMS »
ELEMENT  ACTIVe SPARE STANYBY RECIABILITY
1 $ 0 0
2 3 0 0
3 3 1] 0
4 3 1] 0
9 K 0 0
6 3 0 o
7 ) ¢ 0
8 i 0 4 9990148
9 1 0 3

SYSTEM RELIAGILITY 890726
SYSTeM cusT 747,00




can be made redundant by using majority voting logic and two elements can be further
modified by using standby elements with switching. The input information is contained
on the following printout. The initial system configuration indicates the number of
active, spare, and standby elements in the system at the beginning of the computer
run, the indicator tells the computer the elements which can be made redundant by
adding further active items or using majority voting logic, adding spares and
standbys. In this example the majority voting logic is used (a maximum of three
elements at least two of which must operéte), no spares are permitted, and standby
items are permitted for elements 8 and 9. The program output is given in Table 7-8.
The program obtains the reliability estimates for each element subject to
its initial configuration; that for element 1 is shown below. Then the reliability
of the initial system is computed from the model supplied by the user. The initial
step is given in the printout. At this point the program is ready to alter
each element in all possible manners as specified by the indicators in order to
determine the optimum configuration for one item added (two for the majority voting
alternative). The results for item 9 are given because there are two alternatives.
-The item which gives the largest increase in reliability per unit cost is the one
selected for step 1; in this case it is element 1 and a majority voting element
with three items is used. This procedure is repeated at each step to obtain a
system configuration with the desired relaibility or one for which the increase in
reliability is less than 0.00l. Fourteen steps were used in the analysis; the final
system configuration is given on the final printout along with the system reliability

and cost.
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8. Testing

Many of the results of experimental programs can be analyzed by graphical techniques
such as drawing a curve by freehand through a set of data points, or by comparing a
test measurement with a physical requirement. These particular methods of analyses
do not require formal computation by the use of a digital computer. However,it is
not unusual in typical experimental programs to encounter situations in which one is
measuring several performance attributes and as many as 10 or more independent variables
such as part characteristics and ‘environmental stresses. In order to analyze data of
this complexity it is usually necessary to use digital computer programs which are
already available.

In addition, one is often faced with the problem of estimating the parameters
of life distributions on the basis of an observed sample of items placed on test for
a fixed test time. In order to have the capability of describing these data by means
of one or more of the many failure-time distributions, it is convenient to have com-
puter programs to perform the tedious analyses.

In this section the computational approaches are subdivided into those which
pertain to: (1) attribute data, (2) variables data, and (3) stress—strength measure-
ments. By attribute data we mean simply that the observation of an experiment is
classified as a failure or nonfailure, or in a case of a performance measurement that
the observation is classified as go or no-go. In the latter case, the region of
observations is subdivided into two disjoint regions; the acceptable performance
region and the nonacceptable region. By variables data we mean observations which
can take on any one of a set of values over a given range of values. The third
category, stress-strength measurements includes stress—-at-failure data, such as would
be obtained in a tensile test of a particular metal specimen. It also includes the
data resulting from sensitivity testing, where an item is placed on test at a fixed
stress level and test results recorded as a failure or a nonfailure.Table 8-1 summarizes
the results of this section with respect to the type of data and the associated
problems. Table 8-2 contains a listing of the computer programs which may be helpful
in solving the corresponding problems.

8.1 Attribute Data

The typical computational problems associated with attribute data are to prowvide
sampling plans and their operating characteristics and to obtain confidence limits
for the true proportion of nonfailures (or ''go" items). Both of these problems usually
are solved using the binomial distribution.* It is necessary to sum several terms

of this distribution in order to obtain the probability that a given sampling plan

*
A description of distributions is given in the Appendix of Vol. III - Testing
of this series.
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Table 8-1

Categories of Testing Data and Associated Computational Problems

Attribute Data

[Testing Resultsl

Failure or nonfailure
Go-no go

-Check consistency of observed
data with requirements

-Provide sampling plans

-Obtain confidence limit

Stress—Strength Measurement
Sensitivity Data

—-Test to failure data
* tensile strength
* yield strength

-Perform sensitivity analyses
* probit method
* other

estimates based on binomial

distribution

l Variables Data l

-Design experiment

Failure~time Data

—=Obtain form of life
distribution

|-Test for goodness of
fit with assumed
distribution form

~Estimate parameters
and characteristics
of distribution

-Check consistency of
observed data with
requirements

-Provide sampling plans
(fixed sample size
and sequential type)

T
Measurements at
Discrete Time (s)

-Relate performance measure-
ments to component part
parameters and environment

-Estimate unknown constants
in model; obtailn estimates
of their precisions

-Use performance measure-
ments to screen parts

~Test adequacy of models
relating system perform-
ance to component and
stress parameters

—Check consistency of

observed data with
requirements

95

Continuous
Measurements

—-Perform the appropriate
time series analysis
autocorrelation

spectral densities

-Relate performance
measurements to inputs,
parts, and environment

-Check for consistency
of results with
requirements

-Provide data sampling
methods to yield
required data for
computations



Table 8-2

Testing-Related Computer Programs with Corresponding Problem Areas

Attribute Data

A. Library of Programs
(1). BMD (Ref. 8-16)
(2) STAT-PACK (Ref. 8-7)

Variables Data

A. Performance Data (at Discrete Times)
(1) Least Squares (Linear)

(a) STAT-PACK (Ref. 8-7)
(b) WHIRLPOOL (Ref. 8-2)
(c) 1IBM, 6.0.057 (Ref. 8-3)
(d) BMD programs (Ref. 8-16)

(2) Nonlinear Least Squares

(a) NOLLES (Ref. 8-1)
(b) SDA-3094 IBM-SHARE Library

(3) General Reference (Ref., 8-1)
B. Performance Data (Continuous Records) - Autocovariance and Power Spectrum

(1) STAT-PACK (Ref. 8-7)
(2) BMD programs (Ref. 8-16)

C. Failure-Time Data
(1) Distribution Free Estimates

Burn-in Process, Estimation of Hazard Data and Lifetime, Density
Function (Ref. 8-15)

(2) Estimate of Parameters of Assumed Distributions

(a) Weibull (Ref. 8-13)

(b) Gamma (Ref. 8-8, 8-13, 8-14)
(¢) Extreme Value (Ref. 8-11)

(d) Log-Normal (Ref. 8-10)

(e) Logistic (Ref. 8-12)

(f) Normal (Ref. 8-9)

Programs can be obtained in connection with each of the above
although they may not be specifically identified in the
references.,

(3) Stress Strength Measurements —-- Sensitivity Data (Ref. 8-6)
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will accept a lot of items given the true proportion defective in the lot. Two
quality levels are chosen, one which is considered acceptable and the other considered
nonacceptable. These are referred to as the acceptable quality level (AQL) and the
lot tolerance percent defective (LTPD) respectively.v

The probability of rejecting a lot of items given that the quality level is
equal to the AQL is called the producer's risk. The probability that the lot is
accepted given that the proportion defective is equal to the LTPD is called the
consumer's risk. If it is necessary to compute these two risks for a number of
problems, it is desirable to have a computer program to perform the necessary
computations.

Many programs have been written for these problems, and the results have been
tablulated in a large number of tables of sampling plans and by means of graphs
[Ref. 8-1]. Listings of these programs have not been provided in the literature,
primarily because such programs are easy to write.

Computations similar to those described above are necessary to obtain confidence
limits for the true proportion of failures p (or defectives) in a lot of submitted
items. It is often desired to obtain an upper limt P, and to do so requires the

solution of an equation of the form:

X
o
n X n-x _ _
) (xo) p, (1-p,) o, (8-1)
=0
where

X, is the observed number of failures,

P, is the upper confidence limit,

n is the number of items in the sample,

l-a is the confidence level, and

a is the risk of not including the true proportion of defectives

in the confidence interval 0 < p < P, for p the true proportion
of failures.

This equation can be solved by an iteration procedure using the incomplete Beta
function of one of the transformed distributions such as the variance ratio of an F
distribution. A program can easily be written to perform the required computation
if one supplies as inputs the necessary values of the F distribution or if one pro-
vides an approximating function to the F distribution for each possible combination
of its two parameters. The latter procedure would require considerable input so a

simpler procedure would be to solve the equation by a direct iteration procedure.
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8.2 Variables Data

It is convenient in this section to divide the variables data into the three
categories:

(1) failure-time data,

(2) performance measurements at discrete time(s), and

(3) continuous recording of performance measurements.

This classification of variables data is made primarily for the convenience of the
computational procedures; computer programs associated with the analyses do not
necessarily match the classification of tests described in Vol. III - Testing of
this series. For example, the breakdown of performance measurements into the two
categories, discrete versus continuous, corresponds to the digital versus analog
recording mechanisms. Although both these types of measurements are used for the
same general purpose, the analytical methods are quite different.
8.2.1 Failure-time Data

If a sample of items are placed on test for a fixed test time or umntil a
specified number of failures has occurred, the test results consist of a set of
failure times for the failed items and the terminated test time for all items which
have not failed. It is usually desired to predict, on the basis of these data, the
behavior of a large collection of items to be used under similar conditions. When
pexrforming this prediction, certain problems must be considered:

(1) discriminate between the forms of the life distributions, e.g., normal,

exponential, Weibull, etec.,

(2) test for goodness of fit with an assumed distribution form,

(3) estimate the parameters of the distribution, e.g., the failure rate

parameter in the case of the exponential distribution,

(4) estimate characteristics of the failure rate distribution,

(5) provide testing plans and their associated operating characteristics, and

(6) check consistency of observed data with contractual requirements.

Some techniques for discriminating between the forms of the life distributions
have been given in the literature, for example, see Refs. 8-4 and 8-5. However,it
is possible to compute criteria for goodness-of-fit for each of the distributions
and select the particular form giving the best value of this measure. Some statistical
programs are available for performing a goodness—of-fit, namely:

(1) Kolomogorov-Smirnov tests, and

(2) xz tests.

Computer programs for these tests are included in STAT-PACK [Ref. 8-7]. This

package of programs appears to be the most comprehensive package available to date.
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The programs are written for small.to medium size computers (8K words) and they do
not require any nonstandard features. They are card input and card and/or printer
output oriented. The programs are written entirely in the FORTRAN II language. The
output of each program is labeled as completely as possible for ease of understanding
by users.

One of the basic problems in comparing distributions is estimating the parameters
of each proposed distribution. Several programs are available for estimating the
parameters of the normal, log-normal, Weibull, gamma, generalized gamma, exponential,
extreme value, and logistic distribution. In particular, an entire series of FORTRAN
computer programs for this purpose are available upon request from the Aerospace
Research Laboratory (ARL), Wright-Patterson Air Force Base, Ohio. In addition to
these programs there is a collection of references describing the parameter estimation
procedures for each of the above distributions. Almost all of these are available
in the published literature [Refs. 8-9 through 8-141. The estimation procedures are
iterative and based on the maximum likelihood method of estimation. Four programs
are included in STAT-PACK for estimating the parameters of the normal, log-normal,
and the generalized gamma distributions. Some of the above programs include pro-
cedures for estimating the precision of the estimated parameters.

If one is unable to assume a particular form of the distribution, it may be

_possible to make an assumption concerning the monotonic behavior of the hazard rate.

For example, this rate may decrease with time for many electronic components. In

such cases it is desirable to estimate the hazard rate at the end of the test. A
paper appeared recently [Ref.8-15] on this subject and included the listing of a
program for obtaining confidence limits for the estimated failure rate at the termina-
tion of the test under the assumption of decreasing failure rate.

A great many sampling plans have been provided in the literature under the assump-
tion that the failure time distribution takes on one of the many forms given above.
The program is not mnormally listed in connection with the computations of the
sampling plans; however, it is possible to write these programs in most cases by
studying the discussions accompanying the tabulated results.

8.2.2 Performance Measurements at Discrete Time(s)

In this section performance measures such as the output voltage or the curreant
gain of an electronic circuit or the "hot spot" temperature in a nuclear reactor
core will be considered, It is assumed that one wishes to relate these performance
measurements to characteristics of the component parts and the environmental stresses.
Very often it is possible to write these relationships on the basis of technical

knowledge concerning the circuit. On the other hand, it is sometimes possible only
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to relate the performance to certain part characteristics and environmental stresses
by means of an analytical expression in which certain constants or parameters are
unknown but which can be estimated from the results of an experiment. Some of the
problems which are typical are:

(1) to estimate unknown constants in the analytical models and obtain estimates

of the precisions of the constants and of the complete model,

(2) to use analytical models to screen out the "bad" components,

(3) to check the consistency of the observed data with the contractual

requirements, and

(4) to select the parts and their associated characteristics to optimize the

performance of a circuit.

To estimate tHe unknown constants in the analytical models, one can make use of
any one of many computer programs based on the method of least squares. If a model
is linear in the unknown constants to be estimated there are three basic approaches
which have been programmea:

(1) fitting the complete model,

(2) fitting the model by adding on terms one at a time, called step-wise

regression, and

(3) fitting all combinations of linear models taking the variables one at a

time, two at a time, etc.

Several programs are included in STAT-PACK for the approaches (1) and (2)
given above, Two programs are available for the third approach [Ref. 8-2, 8-3].

In case the model is nonlinear in the constants to be estimated the least squares
procedure is still applicable, but the method of solution is iterative and based

on one of many possible searching techniques. Several programs have been written
for nonlinear regression problems [Refs. 8~1, 8-7]. 1In addition to the above men-
tioned programs one will f£ind comparable programs in the SHARE, CO-OP, and other
such computer service systems. In order to estimate the precisions of the constants
certain additional computations must be performed, such as obtaining the sum of
squares of deviations of the observations from the predicted mean performance values,
and inverting matrices. Most of the programs described above include some of these
additional computational features.

One technique used to screen bad components is to obtain a linear discriminating
function with the characteristics of the components. The coefficients in the linear
function are estimated by an approach similar to that used in least square problems.
A computer program in STAT-PACK [Ref. 8-7] is available for performing this analysis.

Having determined the functional relationship an item is declared good only if, for
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example, the value of the function is less than or equal to a particular constant

c and is declared bad if the value of the function exceeds c. The value of the
function is determined by substituting the characteristics of the components into
the discriminating linear relationship with known constants estimated from the data.

In order to select the component part of a system such that the performance will
be optimized, it is necessary to obtain an analytical model relating performance
measures to the pertinent part characteristic and environmental stresses. Obtaining
this model has been previously discussed; it is assumed that such a model has been
obtained from theoretical methods and/or experimenfal results. Given the model,
the problem then is to find the maximum or minimum value of the function for the
region of possible values of the part characteristics. The many optimization programs
that are available for solving these problems were tabulated and discussed briefly
in the section on optimization techniques. Those techniques which would be of parti-
cular value here are the search techniques and nonlinear programming methods, because
it is expected that most of the relationships will be nonlinear. The optimization
techniques will yield the optimum values of the part characteristics from which one
can hopefully select the best parts to use in the system.

8.2.3 Continuous Recording of Performance Measurements

In order to assess the performance of many physical systems it is often necessary
.to record measurements continuously by means of analog equipment. Although the use
of an purpose for taking such measurements does not differ from those taken at dis-
crete times, the analysis techniques are quite different. Hence this type of measure-
ment is treated separately. Typical computation problems that arise in this connection
are:

(1) performing time series analysis, including autocorrelation and spectral

density analyses;

(2) relating characteristics of performance measurements to input, parts,

environmental characteristics; and

(3) providing data record sampling methods to yield the desired results and

the required degree of precision.

The usual procedure in analyzing continuous records is to select an appropriate
set of data at equal time intervals from the data tape of interest. These data sets
make up a time series which then become input to a standard‘computer program which
performs the autocorrelation and spectral density analysis. Many programs are
available to perform these computations; for example, STAT-PACK includes a time
series analysis and a time series plotter program. The BMD package of statistical

programs [Ref. 8-16] contains two applicable programs; one performs a cross-spectral
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analysis and the other performs related computations. Similar programs are available
through computer service orgamnizations,
8.3 Stress-Strength Measurements )

A great many testing problems fall into the category of determining the strength
of the components to be used in a system. Although strength may be considered to be
a performance measurement in the general sense, it is treated here in a separate
section because of the nature of the testing problem and the resulting data.

It is not always possible to place an item on test and increase the strength
in a continuous manner until the item fails and use the stress at the time of failure
as the strength of the item. In testing many components the procedure is to place
several items on test at each of several stress levels and observe the number of
failures at each stress level. From these test results one can derive a distribution
function for the probability of failure versus the stress level. Such testing is
frequently referred to in the literature as sensitivity testing. A large variety
of sensitivity tests have been discussed in the literature; these have been conveniently
summarized in [Ref. 8-6]. One of the earliest sensitivity tests is a sequential
procedure referred to as the Bruceton or the "up and down" test method. In this type
of experiment the iterms are tested one at a time at a stress level; each item tested
is dependent on the response and the stress level of the previous item tested. Many
variations of these tests have been suggested, most of which are just different pro-
cedures by which one determines the stress level for each item tested in terms of
the levels used for all previous tests rather than just the last-tested item.

The analyses of the data resulting from such experiments are usually quite easily
performed by manual methods., Consequently, only a few programs are available for
performing the analyses of test data resulting from sensitivity experiments. In
particular, a program for a probit* analysis is included in the BMD series of programs
[Ref. 8-16] and one in [Ref, 8-6]. The latter reference includes in addition computer
programs for Monte Carlo simulation of the test results and the analysis of proportions
of failures by the method of reversals. This latter method is frequently used in the
analysis of experiments in which the stress level is determined on the basis of the
proportion of successes observed at all previous stress levels tested, and the pro-
portion of failures is assumed to be either an increasing or a decreasing function

of the stress level.

*
The probit method is a nonsequential design for relating response to stress
or stimulus level.

102



References

8-1.

8-10.

8-11.

8-12.

8-13.

8-14.

Nelson, A. C.; et. al.: Evaluation of Computer Programs for System Performance
Effectiveness. Progress Report No. 1 (Lab Project 920-72-1, SF-013-14-03,
Task 1604, Contract NO0140 66C 0499), Research Triangle Institute, System
Statistics Group.

Krumbein, W. C.; et. al.: Whirlpool, A Computer Program for "Sorting Out"
Independent Variables by Sequential Multiple Linear Regression. Northwestern
University, Evanston, Illinois, 1964, AD 611 142.

IBM, 6.0.057: Linear Regression Analysis of All Combinations of Variables.

Cox, D. R.: Further Results on Tests of Separate Families of Hypotheses.
University of London, J. Roy. Stat. Soc, (B), no. 24, 1962, pp. 406-424.

Cox, D. R.: Tests of Separate Families of Hypotheses; Proceedings of the
4th Berkeley Symp., vol. 1, pp. 105-123.

Rothman, D.; Alexander, M. J.; and Zimmerman, J. M. : The Design and Analysis
of Sensitivity Experiments. NASA CR-62026, vols. I and II, May 1965.

Shannon, Stan; and Henschke, Claudia; STAT-PACK: A Biostatistical Programming
Package. Wadley Research Institute, Dallas, Texas, Commun. ACM, vol. 10,
no. 2, Feb. 1967, pp. 123-125,

Harter, H. Leon: Maximum-Likelihood Estimation of the Parameters of a Four-
Parameter Generalized Gamma Population From Complete and Censored Samples.
Applied Mathematics Research Laboratory, ARL 67-0089, April 1967.

Harter, H. Leon; and Moore, Albert H.: Iterative Maximum-Likelihood Estimation
of the Parameters of Normal Populations from Singly and Doubly Censored
Samples. Biometrika, vol. 53, nos. 1 and 2, 1966, pp. 205-213.

Harter, H. Leon; and Moore, Albert H.: Local-Maximum-Likelihood Estimation
of the Parameters of Three-Parameter Log-normal Populations from Complete
and Censored Samples. J. Am. Stat. Assoc., vol. 61, September 1966,
pp. 842-851,

Harter, H. Leon; and Moore, Albert H.: Maximum-Likelihood Estimation, from
Doubly Censored Samples, of the Parameters of the First Asymptotic Distri-
bution of Extreme Values. Aerospace Research Labs and Air Force Institute
of Technology, Wright-Patterson AFB, Ohio.

Harter, H. Leon; and Moore, Albert H.: Maximum-Likelihood Estimation, from
Censored Samples, of the Parameters of a Logistic Distribution. Aerospace
Research Labs and Air Force Institute of Technology, Wright-Patterson AFB,
Ohio.

Harter, H. Leon; and Moore, Albert H.: Maximum-Likelihood Estimation of the
Parameters of Gamma and Weibull Populations From Complete and From Censored
Samples. Technometrics, vol. 7, no. 4, November 1965.

Harter, H. Leon: Series Expansions for the Incomplete Gamma Function and Its

Derivatives. Blanch Anniversary Volume, Aerospace Research Labs, Office
of Aerospace Research, U. S. Air Force, February 1967.

103



References (Continued)

8-15. Barlow, R. E.; Proschan, Frank;Scheuer, Ernest M., with an Appendix by
Madansky, Albert: Statistical Estimation Procedures for the "Burn-In"
Process. RM-5109-NASA, RAND Corporation, September 1966.

8-16. Dixon, W. J., ed.: Biomedical Computer Programs (BMD). Health Sciences

Computing Facility, Dept. of Preventive Medicine and Public Health, School
of Medicine, Univ. of Calif., Los Angeles, Calif., Jan. 1, 1964.

104



9. Trends in Digital Computation

In previous sections of the report, we have identified and discussed the various
aspects of design for reliability where the computer can provide assistanée. In this
section we summarize some recent developments in communicating with the computer which
promises to make it of much greater value to the scientist and the engineer. These
developments are not specifically related to reliability, but since they are of a
general nature their impact will certainly be felt in many future uses of the computer
for reliability analyses.

There are three computer developments we wish to discuss. First, the use of

problem-oriented languages is certain to spread as they continue to be developed and

their utility becomes both greater and more widely appreciated. The other two develop-

ments are on-line computation and computer graphic input/output capabilities, here

simply called graphics.

Problem-oriented languages are already in wide use [Refs. 9-1 to 9-4]. A problem-

oriented language permits the description of a broad class of problems in a given
problem area via a simple vocabulary comprised of terms familiar to the engineer working
in that problem area. For example, the electronic ciréuit analysis program ECAP input
language uses for the most part the same nomenclature to describe a circuit to be
analyzed that the circuit analysis engineer would use to analyze the circuit by hand.

A computer program written in a problem-oriented language is not a program in the
ordinary sense. This is because it is really just an unambiguous problem description
rather than the logical sequence of steps required for the solution of the problem.

The sequence (i.e., the algorithm) required to implement the solution of a given
problem is incorporated as a part of the computer program for processing input state-
ments to the problem-oriented language; these input statements are the problem descrip-
tion. Thus the programmer or the designer does not need to worry about whether his
algorithm for solving the problem is correct; he need only worry that his problem is
properly and unambiguously stated. Problem~oriented languages have already been
developed for use in designing chemical processing plants [Ref. 9-1], structures

[Ref. 9-2], and electrical circuits [Refs. 9-1, 9-3, and 9-4].

The only responsibility of the problem-oriented language user is that he know
the syntax of the problem-oriented language and some simple rules concerning the ordering
of the statements which describe the problem he is solving. To summarize, the problem~
oriented language is simply a special program which allows as input the unambiguous
description of a particular problem suited to that language and the associated data
required for solution of the given problem. The individual using the language writes

a new input program for each different problem, without having to worry about the
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problem solution algorithm in contrast to procedure-oriented and assembly language
programs. To provide the advantages of the problem-oriented language there must

be a computer program which processes the input statements, digests the information
contained in the statements, and generates the proper machine language program which
when executed solves the problem described by the input statements.

On-line computation refers to the situation wherein the computer user sits at

the computer console (it may be the console of a small computer just for the single
programmer, or it may be a remote terminal connected to a large central computer)

and views the results of his program instantaneously. In the early days of digital
computation, it was a practical thing for the designer or other computer users to use
the computer in this fashion. However, as the machines became bigger, more powerful,
and more expensive, it became no longer practical for the individual to use the computer
in this individual fashion. The result was that computer monitoring programs called
operating systems were developed to supervise the operation of the machine. Computer
systems operating in this mode process the computer user's program in a sequential
fashion, so that each program is completely finished before the next program is begun.
The mode is called batch processing. The computer facility is operated in such cases
(and this is the usual case today) on a closed-shop basis, which means that the computer
user is not present when his program is being run and the time delay between delivery

of the program to be run and the return of the computer results (the so-called turn-
around time) varies from hours to days.

Because of the turn-around problem, it simply is not practical to use the closed-
shop computer to solve problems by heuristic methods, extrapolating earlier successes
to obtain new ones, Because of the nature of engineering design, many of the most
challenging engineering problems are most effectively solved by such methods. If
the computer is to be of maximum assistance in this design process, turn-around times
of hours are obviously hopelessly long. Even turn-around times of minutes are usually
too long to allow the designer to use the heuristic method of solving problems while
interacting with the computer.

The provision of a method for allowing the designer to interact directly with
the computer can be obtained either by the small individual computer or by a.remote
console linked to a large computer. Although both approaches have merit, the remote
terminal linked to the large computer is perhaps more valuable in this role.

Since the response time of the designer is quite slow compared to the computer,
the instanteous response of the computer to the request of the designer can be pro-
vided economically only if the resources of the computer are shared for other purposes

while the designer is thinking and modifying his programs, etc. It appears certain
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that the near future will see the widespread use of computer consoles by engineering
personnel for effective designer-computer interaction, in this time-shared mode of
computing. Ref, 9-1 contains some examples of such uses.

The development of computer graphics is both a powerful additional computer capa-
bility in itself and a complement to the above-~discussed new computer developments.

The development of effective graphic input-output devices for computers traditionally
has lagged the development of computers, and it is only quite recently that versatile
graphic input-output devices have become available at reasonable cost. The first
graphical output device was doubtless the line printer wherein a clever programmer used
appropriately chosen characters to sketch a graph or a crude picture, Then, program-
controllable cathode ray tube output devices became available. Although the early
ones were quite limited in theilr capabilities, they provided great improvements over
line printers used to produce pictures. Cathode ray tubes with graphical input capa-
bility in addition to output first became available in the early 1960's. Some such
equipment allows the drawing of lines directly on the face of the scope using light
pens or other input devices. Others allow only the display of characters at fixed
locations only; the characters are typically input via a typewriter-like input device.

A considerable variety of improved graphical devices for computers are currently
under development, These devices when possessing line drawing capabilities require
quite high transfer rates between the display device and the computer to maintain
picture clarity. Consequently, it is common to find a small computer whose sole job
it is to maintain and manipulate the display information, connected to a large computer
which performs the computations required for the problem under study.

Typical of what can be done with the combination of graphic input/output devices
in a large powerful computer is the DAC system [Ref. 9-1] developed by the General
Motors Research Center. This system, in addition to providing direct communication
between the designer and a powerful computer, can produce control tapes for automatic
drafting machines, numerically controlled milling machines, etc. Such systems appear
destined to play important roles in the design of all future complex engineering systems,

The combination of all three of the above developments has already been made on
an experimental basis [Refs. 9-5 and 9-6]. 1In these efforts circuit analysis programs
were used on-line via graphic input/output devices to the computer. Those people
who have used these experimental systems are highly enthusiastic about the effective
increase in design capability through the use of these systems. Certainly the future
will see such systems playing an important role in implementing presently available

and future more general reliability analyses.
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SOURCE LIST

#oss  PERFORMANCE ANALYSIS PROGRAM ##a»

100

DIMENSION HI(5),Nv(5),J1(5),ALPHAC20),SY1(5),SY2(5),SY3(5),SY4(5)
1,SCP(5,5),TM(20),1SD(20),HD(20),A(3,10), IRAND(20),RHO(20,20),R(20,
220),UR(2),D(20),RN(20),RS5(20),RSS(20,20),8(100),Y€100,5),AMU1(5),4A
3MU2(5),AMU3(5),AMU4(5),S1G(5),GAM1(5),GAM2(5),STD(5),2(5,13),ELPH(
45,13),AH(2,35)2NEL(20),NE2(20)

COMMON UR, XN,LQUP,Z,GAMt,GAM2,AMU1,AMU2,S1G,ELPH

INPUT GENERAL INFORMATION

XN , , , . STARVTING VALUE FOR RANDOM NUMBER GENERATOR
NM . + . . NJMBER. OF MODEL

HI . . MODEL NAMES (ALPHANUMERIC)

NV . . . . NUMBER OF VARIABLE IN MODEL

J1 . « « . NUMBER OF CORRELATED VARIABLES N MJDEL
LIMYI _ . NUMBER OF DaTa POINTS TO BE GENERATED

A, . . . . SUBRUUTINE NAMES (ALPHANUMERIC)

AH . . D[STR{BUT|ON NAMES (A_PHANUMER]C)

™ . NOMINAL VALUES

TSp, ., . . DEVIATION VaLUES
HD , , . . VARIABLE NAMES (A PHANUMERIC)
IRAND | , RaNDUM NUMBER caLlL VaLUE
NE ., , . . PARAMETERS FOR BETA AND GAMMA DISTRIBUT]ONS
ALPHA. . . PARAMETER FOR WEIBULL VARIABLES
RHO, , , . INPU1 CORRELATIONS
READ 98, XN

READ 50,NM,(HI(I),I=z1,NM)

READ 51,(NV(I),J1(]),[=1,NM),LIM1

READ 99, ((AC],J),1=21,3),J=21,10)

READ 99, ((AH(],Jd),J=1,3),1=1,2)
AN=LIM1

LINE = 0

LOOP=0

DO 1 [=1,NM

SY1(1)=0.

sya2(1)=o0.

SY3(1)=0.

SY4(1)=0,

DO 1 J=1,NM

ScP(1,J)=0.

CONTINUE

DO 31 [=z1,NM

K=NV(])

DO 100J=1,K

RS(J)=0.

DO 100M=1,K

R(J,M)=0,

RHO(J,M)=0.

RSS(u,M)=0,

CONTINUE

INPUT NOMINAL AND DEVIATION VALUES
READ 53, (TM(J),1SD(J)sHD(J)» IRAND(J) »NEL(J) »NE2C J) ,ALPHA () » g=1,K)

PRINT 62
PRINT S54,1,HItD)
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14
ie
17

18

DO 2 J=1,K
M=z [RANDC(J)

PRINT 55,J,HD(J)>» 'H(J)-TSD(J)pA(l.H).A(Z.H)oA(S"‘H

CONTINUE
Je2=J1(1)
1F(J1(1))5,5,9
J2=Ji(1)

INPUT CORRELATIDNS

READ 56, ((RHO(N,M),M=N,J2),N=21,J2)
PRINT 57

DO 4 MM=2, 42

MzMM-1

PRINT 58, (RHOC(N,MM) ,N=1,M)
CONTINUE

TRANSFORM CORIELATION MATRIX

CALL SQRM(RHO, y2,R)
L=0
PRINT 59, (HD(M),M=1,K).,HI(])

CHOOSE RANDOM D]ISTR]IBUTION SUBROUTINE
AND CALCULATE PARAMETER VALUES

L=L+1

DO 16 J=1,K

IR=IRAND(J)

60 T0(7,8,9,10,11,12,13,14),1R
CALL UNIFM(1)

ARG = TM(J) + (4,0%UR(1)-2,0)=#TSD(J)
GO TO 15

CALL NORM(ARG)

ARG = ARG # T5D(Q) + TM(J)

GO TO 15

CALL FOR LDGNUIMaAL SUBROUTINE
CALL NORM(ARG)

ARG = EXPUARG*TSD(J)+TM(J))

GO TO 15

CALL EXPN(TSD(y),ARG)

G0 TC 15

CALL WEIB(TSD(J),ALPHA(J),ARG)
GO T0 15

CALL GAMMA(TSD(J),NE1(J),ARG)
60 To 15

CALL BETACALPHACJ) ,NEL(J),NE2(J),ARG)
ARG = ARG*TSD(J)=4,0 - TSD(J)*2,0 + TM(J)
G0 To 15

CALL CHISQ(I1SD(J)>NE1(J),ARG)
RN(J)=ARG

CONTINUE

1IF(J1(1))20,20,17

DO 18J=1,J2

D(J)=0.

Do 18M=1,J
D(J)=D(J)+RN(M)*R(M,))
CONTINUE

DO 19 J=1,J2
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RN(J)=D(J)
19 CONTINUE

CALCULATE INPUT CHECK

20 CONT]NUE
D0 22 J=1i,K
RS(J)=RS(JI+RN(J)

DO 22 M=1,K
RSS(J,MI=RSS(J,M)+RN(J)I*RN(M)

22 CONT]INUE
DO 123 J=1,K
X(J) = RN(Y)

123 .CONTINUE
CALL MODEL(RN,I,Y(L,I))

PRINT 60, (RN(M)»MZ1,K)oY(L,])
LINE = LINE + (K+16)/8
IF(LINE-44)310,300,300

300 PRINT 320
LINE = 0

23 CONTINUE
LINE = 0
DO 24 J=1,K
RSS(g» g)=SARTE(RSS(Js y)=RS(JIBRS(J)/ANI/(AN=-1,))
RS(J)=RS(J)/AN

24 CONTINUE
PRINT 61
PRINT 52,1,A1(])

D0 25 J=1,%
Mz IRAND(J)
PRINT 55,J,HD{J) ,RS(JY,RSS(J,J), A1, M), AL2,M),A(3,M)

25 CONTINUE
IF(J42)31,31,26

26 DO 28J=1,J2
DO 28M=1,J2
IF(J-M)27,28,27

27 RSS(J,M)=((RSS(J,MI-RS(JI*RS(MI*#AN)/(AN=-1,))/(RSS(y, JI#RSS(M,M))

28 CONTINUE
DO 29 J=1,42
RSS(y,J)=1,

29 CONTINUE
PRINT 57
DO 30 JJ=2,J2
J=dd-1

PRINT 58, (RSS(JJsM),M=1,J)

30 CONTINUE

31 CONTINUE

ARRANGE DEPENDENT DATA IN ASSENDING ORDER

DO39N=1,NM

KK=1

B(1)=Y(1,N)

DO 37 1=2,LIM1

IF(B(KK)~Y(I,N))32,32,34
32 B(l)=Y(I,N)
33 KK=1]

60 TO 37
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34 DO 35 M=1,KK
J=l=M
IF(BC(JI-Y(1>N))36,36,35
35 B(J+1)=B(J)
B(J)=Y(]I,N)

GO VO 33
36 B(U+2)=Y(]I,N)
KK=1

37 CONTINUE
DO 38 1=1,LIM1
Y(1,N)=B(I])
38 CONTINUE
39 CONTINUE
PRINT 63,(HIC(I),1=1,NM)
DO 40 I=1,LIM1
PER=FLOAT(])/AN
LINE=LINE+1
IF(LINE~-44)540,540,330
330 PRINT 320
LINE = 0
340 PRINT 64,]1,PER, (Y(],N),N=1,NM)
40 CONTINUE
DO 42 N=1,LIM1
DO 41 [=1,NM
TY=Y(N.[)
SY1(1)=SY1([)+TY
YT=TY*TY
SY2(1)=SY2([)+Y!
SY3(I)=SY3([)+Ylw=lY
SY4([)=SYA(I)+YI#YT
DO 41 J=1,NM
SCP(I,J)=SCP(I,J)+*Y(N,I)*Y(N,J)
41 CONTINUE
42 CONT]INUE

CALCULATE DISTRIBUTION MOMENTS

Y1(I)/AN

>
X
c
n
-~
———
e

D0420N=1,L]M1
YC=Y(N,I)-amuUl(l)
YCSQ=YC*YC
TAMU2( ) =AMUZ2(¢I)+YCSQ
AMUS(I)=AMUS(I)+YCSQ*YC
AMU4(1)=AMUG(]1)+YCSR*YCSE
420 CONTINUE

SIG(I)=SART(AMJU2(I)/AN)
GAML(I)=AMUS(1)/(SIG(I)=AMU2(]))
GAM2(])=AMUACI)/(AMU2(])*AMU2(]))
"STD(I)=SQRT(AMU2(1)/(AN=-1,))

43 CONTINUE
DO 44 [=1,NM
DO 44 J=I,NM
SCP(I,J)=(SCPUT,J)~AMUL(I)*#AMUL(J)#AN)/(AN-1,)

44 CONTINUE
PRINT 65, (HIC1),I=1,NM)
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Qaa

45

146

46

47

48
49

50
51
52

53
54

55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74

PRINT 66, (AMUL(I),1=21,NM)
PRINT 67, (AMUZ2(]),1=1,NM)
PRINT 68, (AMUS(I),1=1,NM)
PRINT 69, (AMUA(]1),I=1,NM)
PRINT 70,(STDC(1),1=1,NM)
PRINT 71,(GAM1(I),1=1,NM)
PRINT 720(GAM2(I)11=1:NH)
PRINT 73,NM

DO 45 [=1,NM

PRINT 74IHI(I)I(SCP(IDJ)IJ=1DN")
CONTINUE

D0491=1,NM
2(1,1)=AMU1(])-5,25TD(])
D0146J=2,13
2(1,9)=2(]1,J-1)+g.5#+STD(])
CONTINUE

CHOOSE SUGROVTINE TO FIT pISTRIBUTION OF MODEL

IF(GAM1(1)=-0.5)46,46,47

CONTINUE

CALL EDGE(])

LOP=1

GO TO 48

CONTINUE

CALL LAGUR(I,AN,SY2(1),SY3(I),SY4(1))
LoP=2

PRINT 75,HICI), CAH(LOP,J),J=1,3)
PRINT 76,(Z(1,J),ELPH(I,J),J=1,13)
CONTINUE

PUNCH 98, XN

FORMAT(12,5A4)

FORMAT(1115)
FORMAT (6HQMOD=ZL,13,2H, ,A4,10X,10HVAR, NAMES,5X,13H MEANS

15X,9HSTD, DEV.,5X,12HDISTRIBUTION)

FORMAT(2E10.4,A4,1X,13,212,E10.4)
FORMAT (6HQMODEL,13,2H, ,A4,10X,10HYAR, NAMES,5X,13HNOMINAL VALUE.,

15X, 9HDEVIATION,5X,12HDISTRIBUTION)

FORMAT (19X, 13:6X,A4,9X,E12.5,6X,E11.5,4X,3A4)
FORMAT(16F5.0)

FORMAT (19HQINPUT CORRELATIONS//)

FORMAT(1H ,20F5.3)
FORMAT(1H-,5X,8(5X,A4,3X)/3X,8(5X,A4,3X)/8(5X,A4,3X))
FORMAT(1HO,5X,B8E12,4/3X,8E12.4/8E12.4)

FORMAT (12H-INFUT CHECK)

FORMAT (1H-)
FORMAT (41H-DEPENDENT DATA LISTED IN ASCENDING ORDER,//4H 1,

15X,5HI/N  ,5(7x,A4,3X))

FORMAT(I14,F10.3, SE14.,4)
FORHAT(BH-HUHEVIS/10X.5(7X,A4p4X))
FORMAT(10HO FIRST,5E15.6)
FORMAT(10H0 SECOND,5E15.6)
FORMAT(10HO THIRD,5E15.6)
FORMAT(10HQ FOURTH,S5E15.6)
FORMAT(10H0STD, DEV.,5E15,6)
FORMAT(10H0 SKZWNESS,S5E15.6)
FORMAT(10H0 KUR10SIS,5E15.6)
FORMAT(36HOVARIANCE = COVARIANCE MATRIX, ORDER,I12)
FORMAT(1HO,3X,»A4,2X,5E15,.6)
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75 FORMAT(23H-PERCENIAGE POINTS FOR ,A4,4H BY ,3A4)
76 FORMAT(5H0 £ =,F10,5,10H F(Z) =,£13,5)
98 FORMAT(F10,0)
99 FORMAT(20A4)
320 FORMAT(1H=-//)
STOP
END

SOURCE LIST

SUBROUTINE SQGRv(RHO,N,R)

DIMENSION RHO(20,20),R(20,20)

DO 8 I1=1,N

DO 8 J=I,N

KK=1

P=RHOC, J)

IF(KK-I)Z.S:S

P=P~R{KK,J)#R{KK, [)

KK=KK+1

GO TO 1

IF(J-1)8,4,7

IF(P)5,6,6

PRINT 10,1,J,R(I,J)

R(1,J)=SQRT(P]}

GO TO 8

R(I,J)=P/R(I,1)

CONTINUE

RETURN

10 FORMAT(QH-ELEMzZNT 213,12HIS EQUAL TO ,E15,6!
END

[ SRS B ] N =

®©

SQOURCE LIST

SUBROUTINE EDGE(J)

DIMENSION UR(Z),2(5,13),GAM1(5),GAM2(5),AMUL(5),aMU2(5),81G(5),
1ELPH(5,13)

COMMON UR, XN,LJ0P,Z,GAM1,GAM2, AMUL,AMU2,SIG,ELPH

Y1 = .,14112821

Y2 = ,08864027

Y3 = .02743549

Y4 = .00039446

Y5 = ,00328975

DO 3 1=1,13

ZR = (2(J,1)-AMUL()))/S1G(J)
22 = IR * IR

23 = IR * 72

ZP = ABS(ZR)/1,41422

P2 = IP = (P

ZP3 = ZP = (P2

DENOM = (1, +Y1lauiP+Y24ZIP2+Y3#ZP3+Y42IP247P2+Y5%ZP2%7P3)%x6

TERM1 = 0.5 * (1,-1./DENOM)

TERMZ2 = 0.3989%« EXP(-22#0.5)#((~-GAM1(J)/6.)*(22~1.)
1+(GAM2(U)=3.)724,#(3.,%ZR-Z3)+GAM1(J)*GAML(J)
2#(10,%23~22%25-15.#ZR)/72.)

IF(ZR)1,1,2

1 ELPH(J,1) = 0.5-TERM1+TERM2
GO TO 3
2 ELPH(J,I)s 0,5+TERM1+TERM2
3 CONT]NUE

RETURN

END
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SOURCE LIST

SUBROUTINE LAGUK(J,AN,SY2,SY3,SY4)

DIMENSION UR(Z),2(5,13),GAM1(5),GAM2(5),AMUL(5),AMU2(5),S1G(5),
1ELPH(5,13)

COMMON UR,XN!LDUP,Z,GAM1.GAH2.AHU1.AHU2,S]G.ELPH

ALP = AMUL(J)Z7AMUZ(J)

ALM = AMUL(J) = ALP

LAMDA = ALM

AMD = LAMDA

TEST = 2,%(ALM-AMD)

IF(TEST~1.01,¢,2

1 IF(AMD)3, 2,9
2 AMD=AMD+1,

LaMDA=LAMDA+1
3 LAM=LAMDA-1

AL2=aLP®ALP

DEN1=(AMD+1.)*(AMD+2,)

DEN2=DEN1#(AMD+3,)

DENS=DEN2%,MD

V2=SY2 , AN + aMU1(J)=aMU1(J)

B%‘(Aﬁul(J)iALP AMD)/AMD

(V2e 122 *(aAMD*1 ) *aAMUL(J)*ALP+AMD* (AMD*1,))/ (2 #aAMD* (AMD*1,
1)
93=((SYS/AN)iA_P.AL2'3.i(AMD+2.)#V2'AL2+3.#DEN1“AMU1(J)
1#,) P-AMD*DEN1) /(6 ,#AMD#DEN1)

B4z=( (SY4/ANI#A_2%AL2-4 #(AMD+3,)2(SY3/AN)#ALP
1#AL2+6.#(AMD+2 ) (AMD+3,)#y2aAL2-4,#DEN2=AMUL (V)
2#ALP+DEN3) /(24 #DENJ)

DO 8 1=1,13

X=Z(1)=ALP

IF(LAM)4,4,5

4 TERM1i=-1,

CCE=1.

60 To 7

5 COE=AMD-1.

TERM1==X##_ AM

DO ¢ K=1,LAM

TERM = TERM1-COoE#(Xne (| AM=K))

IF(K~LAM)6,7,7

COE=COE*(AMD-(FLOAT(K)+1,))

& CONTINUE

7 TERM2=-B1+B2#(-X+AMD+1,)+B3#(~XnX+2,4(AMD+2.)
1oX~-DEN1)+B4s% (-Xe#%3 +3 #(AMD+3,)axX#X=3,»
2C(AMD+3 ., )% (AMD+2.)*X+DEN2)

ELPH(J,1)=1.+EXP(-X)#(TERM1+(XesLAMDA)*TERM2)/COE

8 CONTINUE

RETURN

END

SOURCE LIST

SUBROUTINE UNIFM(N)

DIMENSION UR(2)»Z2(5,13),GAM1(5),GAM2(5),AMUL(5),AMU2(5),S1G(5),
1ELPH(5,13)

COMMON UR,XN,LJUP,Z,GAM1, GAHZ:AMUI.AHU2 SIG,ELPH

DO 1 I=1,N

RC=33.,#XN+101.

XP=RC/2048,

MU=XP
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UM=MU
UR(])=XP=-UM
XN=RC-UM#2048.
CONTINUE
RETURN

END

SOURCE LIST
SUBROUTINE NORW(ONE)

DIMENSION UR(2),2(5,13),GAM1(5),GAM2(5),AMUL(5),AMU2(5),5]G(5),
1ELPH(5,13) ~

COMMON UR,XN,LOUP,Z,GAM1,GAM2,AMU1,AMU2,S1G,ELPH
IF(LOOP)1,1,2

CALL UNIFM(2)

65=-2.%ALOG(UK(1))

6S=SQRT(GS)

Hz6,283185%UR(2)

ONE=GS#COS (H)

THO=GSSSIN(H)

LOOP=1

RETURN

ONE=TWO

LOOP=0

RETURN

END

SOURCE L1ST
SUBROUTINE EXPN (I1HETA,ARG)
DIMENSION UR(Z).Z(5,13).GAH1(5),GAHZ(S).AHUl(S),AHU2(5),SIG(5),
1ELPH(5,13)
COMMON UR, XN,LOUP,Z,GAM1,GAM2,AMUL,AMU2,5]G»ELPH
CALL UNIFM(1)
ARG=-ALOG(UR(1))#IHETA
RETURN
END

SOURCE LIST

SUBROUTINE WEIS(THETA,ALPHA,ARG)

DIMENSION UR(Z)uZ(5,13).GAM1(5).GAN2(5).AHU1(5)-AHU2(5).SIG(5).
1ELPH(5,13)

COMMON UR,XN,LOOP,Z,GAM1,GAM2,AMUL1,AMU2,S]IG,ELPH

CALL EXPN(THE ! A,ARG1)

ARG = ARG1 * # (1./ALPHA)

RETURN

END

SQURCE LIST

SUBROUTINE GAMMA(THETA,N,ARG)

DIMENSION UR(Z),Z(5,13),GAM1(5),GAM2(5),AMUL(5),AMU2(5),S1G(5),
1ELPH(5,13)

COMMON UR,XN,LQUP,Z,GAM1,GAM2,AMU1,AMU2,SIG,ELPH
G=0,

DO 1 I=1,N

CALL UNIFM(1)

G=G+ALOG(UR(1))

CONTINUE

ARG = ~-G#THETA

RETURN

END
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SQURCE LIST

SUBROUTINE BE!A(ALPHA,N1,N2,ARG)

DIMENSION UR(2),2(5,13),GAM1(5),GAM2(5),AMU1(5),AMU2(5),S51G(5),
1ELPH(5,13)

COMMON UR,XN,LJUP,Z,GAM1,GAM2,AMU1,AMU2,S1G,ELPH

CALL GAMMA(ALPHA,N1,ARG1)

CALL GAMMA(ALP4A,N2,ARG2)

ARG = ARG1/(AR31+ARG2)

RETURN

END

SQURCE LIST

SUBROUTINE CHISW(IHETA,NDF,ARG)

DIMENSION UR(2),2(5,13),GAM1(5),GAM2(5),AMUL(5),aAMU2(5),S]G(5),
1ELPH(5,13)

CUMMON UH;XNILDUP’Z,GAH1'GAH21AMU10A~U2ISIGIELPH
ARG=0.

DO 1 I=1,NDF

CALL NORM(ARG1)

ARG = ARG + AK31 = ARG1

CONTINUE

ARG = ARG e THzIA

RETURN

END

SQURCE LIST

SUBROUTINE ™MODzL(X,J,Y)

SUBROUTINE FOR FUNCTIONAL FORM OF PERFORMANCE ATTRIBUTES
DIMENSION UR(Z),Z2(5,13),GAM1(5),GAM2(5),AMUL(5),AMU2(5),S]1G(5),
1ELPH(5,13),x(2p)

COMMON UK ,XN,LJOP,Z,GAM1,GAM2,AMU1,AMU2,S51G,ELPH

X(10) = 0.003

Y = X(1)/X(1p)=#(0,74)+X(2)/X(10)=+%(0,528)+8760.#X(10)e#(X(3)/X(1q)
1#%(0,528)+X(4)/5ART(X(10)))I+X(5)+X(6)+X(7)+8760.#X(10)=(X(B8B)+X(9))
RETURN

END
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Bounds for Reliability Program
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C

sat BOUNDS FOR RELIABILITY Hua
» ANALYSIS gF pATHS AND CUTS =

‘DIMENSION 1P(100,20),1C(20,20)

400

414
420
430

4490
450

2
3
4

1 4
4 3t 3

1y
2u

3u

"4

40
50

60

DIMENSION jUN(20),1B(20),80UND(20),PROB(20),10(10)
READ 1500,N
READ 1510, (PRuB(1),I1=1,N), EPSLON
PRINT 1000,N,(]1,PROB(I),I=1,N)
CALL PATH(N,RNP,]P)
PRINT 1010,4P
DO 450 I=1,nNP
DO 400 J=1,20
IUNCJ)Y = 0
DO 430J=1,20
K = IP(I,Jd)
IFC K 430,430,410
IF(K=-25)424,430,430
IUN(K) = 1
CONTINUE
DO 440 J=1,2u
IP(I,Jd) = TuUuN(y)
CONTINUE
DO 4 I=1,NP
K=0
U0 3 J=1,N
IFCIP(L,J2)%,38,2
K=K+1
I0(K)=J
CONTINUE
PRINT 1020,1,(10(J),J=1,K)
CONTINUE
DETERMINE SYSTEM CUTS
CHECK FOR SINGLE ELEMENT cUTS
K=1
DO 30 I=1,N
DO 10 J=1,NP
IFCIP(I,J))1U»10,30
CONTINUE
IC(K,1)=1
K=K+1
CONTINUE
# CHECK FOR [OURLE ELEMENT CUTS
N1=N-1
VO 90 I=1,N1
I1=1+1
U0 90 J=I1,w
I1DUM=0
po 40 L=1,NP
ITRICK=IPC(L, 1), 0UR,IP(L,J)
IDUM=IDUM+] TKICK
CONTINUE
IFCINDUM=NP) 90,50,90
IC(K, [)=IC(K,d)=1
K1=K-1
D0 70 L=1,Kk1l
D0 60 M=1,N
IDUM=IC(K,M) ,AND,JC(L,M)
IFCIDUM) 60, 60 #HU
CONTINUE
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70 CONTINUE
K=K+1
GO TO 90
80 IC(K,I)=IC(K,J)=0
90 CONTINUE
C ## CHECK FUR TRIPLE ELEMENT CUTS THAT ARE MIN]MaL
N2=N=-2
DO 180 [=1,N2
I1=1+1
DO 180 J=I1,N1
12=J+1
V0 180 L=I2,N
1DUM=Q
DO 120 M=1,NP _
ITRICKZ=C(IP(M, 1) URIP(M»U))ORJIP(M,L)
IDUM=TDUM+ITRICK
120 CONTINUE
IFCIDUM=-NP)L18BU,130,180
130 U0 135 Il=1,N
135 IC(K,11) = @ -
[IC(K,»1)=1C(K,J)=1C(K,L)=1
K1=K~1
DO 170 M=1,K1
[DUM=JDUM=Q
U0 140 IJd=1,N
ITRICK=IC(M,]J) . AND,IC(K,1d)
[DUM=IDUM+ITKRICK
JDUM=JDUM+IC(M, 1)
140 CONTINUE
IFCIDUM-JDUMIL70,150,170
GO T0 180
170 CONTINUE
K = K + 1
180 CONTINUE
C ##2 CHECK FOK FJUR ELFMENT CUuTS
NI=N=-3
0 510 I1=1,nN8
li=1+1
DO 510 J=I11,N2
[2=d+1
U0 510 KK=[2,N1
[3=KK+1
b0 510 L=I13,N
IDUM=Q
D0 460 M=1,\NP
ITRICK=CIP(M, 1), UR,IP(M,J)),0R, CIP(M,KK) ,OR,IP(M,L))
IDUM=IDUM+]I TKICK
460 CONTINUE
IFCIDUM-NP)S10,470,510
47y IC(K,1)=IC(K,J)=IC(K,KK)=]C(K,L)=1
K1=sK-1
bo 500 M=1,x1
IDUM=JDUM=Q
ug 480 I1Jd=1,N
ITRICK=1C(M,1J) ,AND.IC(K,1J)
1DUMSIDUM+ITRICK
JDUM=JDUM+TIC (M, [ J)
480 CONTINUE

0
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490
500

510

R2 2]

520

530

540
550
560

570

IF(I1DUM=-JDUM)ISH0,490,500
IC(K»I)=IC(KsJIZIC(KIKK)=IC(K,L)=0

GO T0 510

CON
K=K
CON

CHECK FOR FIVE ELEMENT CUTS

N4z

TINUE
+1
TINUE

N-4

DO 570 I=1,N4

I1=

DO 570 J=11,N3

I2=

DO 570 KK=12,N2

13=
DO
14=
no
1Dy
Do

IDUM=IDUM+ITRICK

CON

IFCIDUM-NP)570,530,570
IC(K, I)=]C(K,I)=ICc(K,KK)=IC(K,L)=IC(K,MM)=1

Ki=

I+1
J+1

KK+1

570 L=13,N1

L+1

570 MM=14,N

M=0

520 M=1,N\P
ITRICK=((IP(Mr»1)eQR. [P (M, J)) ORVIPIMIKK) ) ORVCOIP(M, L) , QR TP (M, MM))

TINUE

K-1

DO 560 M=1,K1
IDUM=yDUM=(
0Q %40 1J=1.N

ITRICK=IC (M, I1J),ANDIC(K, 1)
IDUM=IDUM+ ] TRICK
JDUM=JDUM+IC

CON

IFCIDUM=-JDUM)IS60,550,560
IC(K, I)=IC(K,J)=IC(K,KK)=IC(K,L)=IC(K,MM) =g
GO TO 570

CON
K=K
CON

i % &%

\

J

185
190

19>

200

NC

Do 195 =1,

K=0

TINVE

TINUE
+1
TINUE

ALL CUTS HAVE BEEN DETERMINED

T K = 1
PRINT 1030,NC

NC

DO 190 J=1,N

IFCIGC(L,J))190,19n,185

K=K
10¢
CON

PRINT 1020,1,¢100(y),J=1,K)

CON
SYS
o

M1

U0 200 K=1,IMm1

I8¢
NM
IJ
30U
Lo

+1
K)=J
TINUE

TINUE
8D =
370 1

1'0
1,NC

= I-1

K) =

= INCOE(NC,1)

s M1
NDCDD)
320 J=

K

1,

J.
NM

(M, 1J)
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210
220
230
240
250

260
270

280
290

£ =1

IF(1J-NC)2%0,210,210

IK = [-K

IFCIBCIK)-(NC~K)) 230,220,220
K = K#1

Go TO 210 .

IRCIK) = IgC(IK) + 1

DO 240 JI=IK,I

IB(JI+1) = IB(JI) + 1

IJ = I18([=-1) + 1

g0 TO 260

1d = 1+ 1

po0 270 JI = 1N

IUNCGUT) = 1CC(IJ,J1)

DO 290 JI=1,1M1

N1 = [B(JID)

DO 280 IK=1,N .

IUNCIK) = TUNCIK) OR,IC(N1,IK)
CONTINUE

PR = 1,0

##4 CALCULATE EVENT PROBABILITY

300
310

320

Do 310 [K=1,N

IFCIUNCIRD) ) S10,3810,300

PR = PR # (1,0-PROB(IK))
CONT INUE
SOUND(I) = QUUND(]) + PR
CONTINUE

#eur PRINT BOUNDS (UPPER OR |LOWER) AND TEST Tu UETERMIND CONVERGENTS

4#*

330

340
$50
36U
370

$8U
1go0v

1910

1020
1030
2010
2020
203U
1500
151U

" OF SERIES CALCULATIONS

I1 = MOD(I,2) + 1

SYSBD = SYSBD + BoUND(I)s#(-1,0)=a(l11-1)

50 TO (340, 33¢), 11

PRINT 2010,5YSKD,ROUNDC(I])

G0 TO 350

PRINT 2020,8Y5S8U,R0UNDC])

IF(I'1)$7U:57U)560
IF(ABS(BUUND(I)=-BoUNDC(I=-1))-EPSLON)380,380,370

CONTINUE

PRINT 2030,35YSKD

G0 TO 1

FORMAT(5?/H- B O UNDS FOR SYSTEM RELIABTILTIT
1Y//7X,16HCIRCYIT ONTAINS,13,9H ELEMENTS//11X,7HELEMENT,15X,114PRO
28ABILITY/11%x, 7HNUMBER,16X,11H0F SUCCESS//(l11>,F26,4))
FORMAT(///7%,27HTIE SETS OK SUCCESS PATHS (,13,2H 1//12X,44PATH,
15X, 15HELEMENT NUMRERS/)

FORMAT(I15,8X%X,1615)

FORMAT(///7X, 9HCUT SETS(,13,2H ))

FORKMAT(16HQLOWER ROUND IS ,E11.5,5X,10HLAST TERM E11,5)
FORMAT(16HOUPFPER ROUND IS ,E11.5,5X,10HLAST TERM Ei11,5)
FORMAT(20H0SYSTEM RELIABILITY E12.5)

FORMAT(1015)
FORMAT(BE10,4)

END

FUNCTION INCUE(N,M)
AN = N

AM = M

ALN = ALUG(AN)

ALM = ALUG(AM)
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NM = M-1

DO 10 K=1,NM

AK = K

ALN = ALN + ALGG(AN=AK)

ALM = ALM + ALOG(AM=AK)
10 CONTINUE

TERM = EXP(ALN=ALM)

INCOE = TERM + 0,1

RETURN

END

SUBROUTINE PATH(NEGP, [MAX,L)
DIMENSTON [TABLE( 25,9),IPRED(9),L(100,20)
DO 100 I=1,20
0o 100 J=1,20
100 L(I,J)=0
JB=NEQP+1
DO 4 I=1,Ug
READ 2, IACVIV,IPRED
Do 4 J=1,9
4 ITABLECIACTIV,»J)=]PRED(Y)
J=1
IMAX=1
L(1,1)= 25
6 J=Jd+1
Ic=0
ICOUNT=D
DO 12 I=1,]MAX
IF(L(I)J-l))7I/IB
7 Ic=1C+1
Go T30 12
8 K=L(],J=-1)
M=1
9 M=M+1
IFCITABLE(K,M))10,12,10
10 ICOUNT=ICOUNT+1
KBC=IMAX+[CUOUNT
DO 11 KK=1,J
11 L(KBC,KK)=L(I,KK)
L{KBC,J)=ITABLE(K,M)
GO TO 9
12 CONTINUE
IFCIC-IMAX)18,14,14
13 IMAX=IMAX+[CUUNT
G0 TO 6
14 RETURN
2 FORMATC(101%)
END
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Appendix C

Reliability Cost Trade-Off Analysis Program
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RELIABILITY cOST TRADE-OFF ANALYSIS

THIS PROGRAM CALCULATES SySTeM ReLIABILITY FUR
SYSTEMS OF ELEMENTS HAVING THE FOLLOWING PROPERTIES

NEL NUMBER OF ELEMENTS

N IDENTICAL ITEMS IN PARALLEL FUR EACH ELEMENT
NO MINIMUM JTEMS NECESSARY pUR OPERATION

1S IDENTICAL SPARES

IR IDENTICAL STANDBY REDUNDANCIES

INPUT VARIABLES IN THE SYSTEM ARE
TIME(D) TIME OR LENGTH OF MISSION

FRATEC(I) FAILURE RATE
RELSH(]D) SWITCH RELIABILITY
SWEST(I) SWITCH COST
ELCST(]) ACTIVE ITEM COST
SPCST(1) SPARE ITEM COST
RSCST(D) STaNDBY 1TEM COST
OTHER INPUT VARIABLES NECESSARY FOR INITIALIZATION
INpCI, ) THESE ARE INDICATURS OF 1TEMS ALLOWED TO VARY
INpRM(I,d) THESE ARE THE INITIAL NUMEERS OF ITEMS IN THE
SYSTEM
DEFINITIUNS OF OTHER VARIABLES USED IN Maln RUYUTINE
CONVG CONVERGENCE CRITEKION FOR HALTING ANALYSIS
TLAM MEAN NUMBER OF FAILURES
M5 NUMBER OF SPARES PLUS NUMBEKR UF STANDBYS
RCID ELEMENT RELIABILITY AT I-VH STEP
RBASE MAXIMUM RELTABILITY OF THE SYSTEM AT 1-TH STEP
CBASE COST OF THE SYSTEM AT 1-TH STEP
NPRM(I,J) NUMBER OF JTEMS IN EACH ELEMENI AT [+1ST STgP
ELRC(I, ) ELEMENT RELIABILITY AT I+iS! STEP
REL(I,J) SYSTEM RELIAWILITY
CEL(I,J) SYSTEM COST
RATIOC(I, ) RATIO OF RELIABILITY 7O cusl
RMAT MAXIMUM RATIO, YEILDS BASE AND CBASE,

DIMENSTON NPRM(10,3),INDC10,3), INPRM(10,3),8EL010,3),CEL(10,3),
1RATIO(10;5).k(10),ELR(10-3)

DIMENSION RELSwW(1Q), TITLE(18)

DIMENSION X(10),No(10),TIMECLQ),FRATE(L10),ELCST(10),8PCcST(1g),
1SWCST(10) ,RSCST(1g)

COMMON X,NO,TIME,FRATE,RELSW,ELCST,SPCST,SWEST,HSCST, NEL, TLAM,MS,N
1,NU

1 READ 1000,NEL,CONVG
READ 1008, TVITLE
DO 5 I=1,NEL
READ 1001, TIMBCI),FRATEC]),RELSW(I),ELCST(T),
15PCST(I),SWCST(1),RSCST(I),NO(]) :
READ 1002, (IND(I,J)sd=1,3), CINPRM(I,K),K=1,3)
5 CONTINUE
SET UP INITIAL CONFIGURATION
PRINT 1010, T1TLE,NEL
DO 20 1=1,NEL

126



20

25

1v

26

27

3u

31

40

41

43

44
45

46

48
50

PRINT 1020, 1, 1IMECI),FRATE(I),RELSW(]),ELCST (1),
15pCSTC(I),RSCSH(I) ,SWCSTCI)

CONTINUE

PRINT 1040

DO 25 1=1,NEL

PRINT 10508,1,(INPRM(],J),J=1,3), (INDC(I,K),KZ1,3)
CONTINUE

DO 10 I[=1,NEL

PRINT 1090

CALL RELESTC(I,INPRM,R(]))

CONTINUE

CALL MODEL(I,R,1,0,INPRM,RBASE,CBASE)

PRINT 1060, KBASE, CBASE

PRINT 1045

PRINT 1040

V0 26 I=1,NEL

PRINT 1070,R(I)

CONTINUE

PRINT 1060,RbASE, CHASE

END OF INITIAL STATE

w0 27 1=1,NEL

Vo 27 J=1,3$

NPRMC],J) = INPRM(I,J)

o 40 1=1i,NEL

U0 40 J=1,3
IFCINDC(I,U)=1)40,30,31
NPRM(I,J)=NPRM(], ) +1
PRINT 1090

CALL RELEST(],NPRM,ELR(I,J))
NPRMCT,J)=1n8PRMCT, J)

GO TU 40

NPRM(TI,J) = NPRMC(1,J) + .2
NOCI) = NOCI) + 1

PRINT 1090

CALL RELEST(I NPRM,ELR(I,J))
NPRMCOT,J)=INPRM(T, J)
NOCID) = NO(I) - 1
CONTINUE

L =0

B0 46 [=1,NEL

DO 46 JU=1,3%
IFCIND(I,JU)=1)46,43,44

NPRMCT,J)=NPRM(T, g)+1

GO TO 45

NPRM(T,d) = GPRM([,J) + 2
CONTINUE

CALL MODELC],R,ELR(I,J), NPRM,REL(I,J),CEL(L,J))
RATIOCL ,J)=(REL(1,J)-REBASE)/((CEL(],J)-CBASE)*RBASE)
NPRM(T,J)=INPRM(],J)

CONTINUE

RMAT=0.0

U0 50 I=1,NEL

B0 50 J=1,43

IFCIND(T,J))50,50,48

KMAT=ZAMAXL(RMAT,RATIO(],J))

CONTINUE

VO 70 1=1,NEL
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D0 70 J=1,3
IFCINDCT,J))T70,70,55
- 55 JF(RMAT-RATIO(],J)) 70,60,70
60 Ni=1l
NJ=J
G0 TO 80
70 CONTINUE
80 [F(ABS(RBASE-REL(NIsNJ))~-CONVG)110,110,85
85 L = L + 1
IFCIND(NI,NJ)=1)86:,86,87
86 INPRM(NIsNJI=INPRM(N[,NJ)+1
G0 TO 88
87 INPRM(NI,NJ) = INPRM(NI,NJ) + 2
NOCNI)Y = NOCNI) + 1
88 KBASE=zREL(NI,Ny)
CBASE=CEL(NI,Ny)
RINI)=ELR(NTWNJ)
QUTPUT NEW CONFIGURATION WITH RELIABILITY awp cUST
PRINT 1080,L
PRINT 1040
po 100 I=1,NEL
PRINT 1055'1'(INPRM(I’J)IJ=1D3)
IF(I-NI)100,90,10n
9y PRINT 1070, k(1)
100 CONTINUE
PRINT 1060,RBASE,CBASE
IFCIND(NI,NJ) - 1)101,101,102
101 NPRM(NI,NJ) = INPRM(NI,NJ) + 1
GO TO 105
102 IFCINPRM(NI,NJ) ~ IND(NI,NJ))103,104,104
108 NPRMUNI,NJ) = [NPRM(NI,NJ) + 2
NO(NI) = NO(NI) + 1
GO TO 105
104 IND(N[,NJ) = ©
GO TO 106
105 CALL RELEST(NI,NPRM,ELR(NI,NJ))
106 NPRMINI,NJ) = [NPRM(NI,NJ)
GO0 TV 41
110 CONTINUE
G0 TO 1
STOP

1000 FORMAT(I5,EL10.4)

1001 FOKMAT(7EL1G.0,15)

1002 FORMAT(6I15)

1003 ¥0RMAT(18A4)

1010 FORMAT( 1H-//10X,43HRELIABILITY COST TRADE-UFF ANALYSIS (RECTA)//
114X,18A4/14%X, 1BHNUMBER OF ELEMENTS,I7//710X,
217HINPUT INFORMATION/27X,20HFAILURE SWITCH *p9X,19HI T E M S
3C0S8 T,9%X,1H#/109X,72HELEMENT TIME RaTt RELTAB, ACTI
4vVE SPAKE STANpBY SWITCH/)

1020 FORMAT(10X,14,F10.0,F10.5,F10,5,2X,4F9.2)

1030 FORMAT(1HO/10X,30HINITIAL SYSTEM CONFIGURATION /17X, 65H* I N1

"1 T 1 AL I TEMS & & # INDICATORS #/10X%X, 70HEL
2EMENT  ACTjVE SPARES STANDBY * ACIIVE SPARES STAND
3BY/)

1040 FORMAT(10X,49HELEMENT  ACTIVE SPARE STaNpgY KELIABILITY/)

1045 FORMAT(1H-/10X,124INITIAL STEP//10X,21HSYSTEM CONFIGURATION/17X,
11H#9x'9H1 T E M S,BX:IHﬁ)
1050 FORMAT(10X,14,19,111,112,113,19,110)
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1055 FORMAT(1UX,[4,19,18,19)

1ge6u

107U
1p8y

1090

iv
1>

16

20

100

11u

120
130

FORMAT(1Hg/19X,13HSYSTEM RELIABILITY,F10,6/10%,11HSYSTEM cOST
17X,F10,2)

FORMAT(1H+,47X,F9,.6) :
FORMAT(1H-/1yX,4HSTEP, I3 //1gX,21HSYSTEM CONFIGURATION/17X,1H%,9X
1,9HI T E M $,8X,14#)

FORMAT (1H=)

END

SUBROUTINE RELEST( IJ, INPRM, REL )

UIMENS{ON TNFPRM(1g,3)

UDIMENSTION RELSW(1p)

BIMENSIQON Xx(10),NOQ(10),TIME(10),FRATE(10),ELCST(10),SPCST(10),
1SWCESTCL0) ,KSCST(1n)

COMMON X,NO,TIMg,FRATE,RELSW,ELCST,SPCST,SWCST ,RSCST,NEL, TLAM,MS,N
1,N0O

NO = NOC(IJ)

N = INPRM(IJ,1)

M INPRM(IJs2)

IR INPRM(1J,3)

PRH = RELSW(IJ)

T = . TIMECTY)

ALAM = FRATEC(IY)

PRINT 190,1J,N,NO,M,IR,PRB,ALAM,T

FRINT 110

REL = U.

TLAM=T=®ALAM

DO 20 1S=0,IR

IFC IR ) 4, 1, 4

BIN = 1,0
a0 TO 16
BINN=BIND=1,U

IF(15)5,15%,5

O 10 I=1,1s

HINN=BINN#FLUAT(IR=1+1)

BIND=BIND®FLUAT(])

CONT INUE

T = FLOAT(IR = IS)

'S = FLOAT(IS

JRB = 1,0 - PRy

HIN = (BINN/BIND)#(PRB%&S )#(QhB#2T )

MS=M+]S

CALL RELPRB(R)

PRINT 120, 15.R

KEL = REL+KR #* B[N

CONTINUE

PRINT 130, REL

RETURN

FORMAT(1Hd0/79X, 54+ RELIABILITY ESTIMATES FOR ELEMENT,13,11H CONTAIN
2ING//79X,30H IDENTICAL ITEMS IN PARALLEL,2UX»14/9X,40H MINIMUM
SNUMBER OF [TEMS FNR OPERATION,10X,1479x,19H . IDENTICAL SPARES,31
4X,14/9X,40H IDENTICAL ITEMS IN STANDBY REDUNDANCY,10X,14/9X,21H
5 SWITCH RELIABILITY,27X,F6.4/9%X,15H FAILURE RATE,29X,F10,4/9X,
67H TIME,37XsF10,17)

FORMAT(9X,42H RELTABILITY tOR FIXED INACTIVE HEDUNDANCY//19%,74STA
INDBY, 11X, 4HREL, )

FORMAT(19X,14,10X%,E12,6)

FORMAT(1HO,9%X, 19HELEMENT RELIABILITY,E12,6)

t=ND
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SUBROUTINE RELPRB(R)
DIMENSION X(10),NO(10),TIME(L0),FRATE(LOD),EILCST(L0),5PCST(10),
“1SHWCST(10),RSCST(1p)
UIMENSION RELSw(1p)
COMMON XsNO» TIME,FRATE,RE SW,E  CST,SPCST,SHUSI,RSCST,NEL, T AM,sMS,N
1,NU ’ :
NN=N=NO
CALL RELINTCO0.0,Cg,FCT)
CALL CUE(C1)
P=0,0
DO 20 K=U,NN
AJAY = K+iNg
BINN= BIND = 1,0
. IFC K ) 11, 11, »
5 po 10 I=1,K
- BINN =z BINN #* FLOAT(NN-I+1)
sIND = BIND # FLOATCI)
1U CONTINUE
11 €2 = (BINN/IINDI=((=-1,0)%%K)/AJAY
IF(C MS )12,12,14
12 P = P + Ces( 1,0 - EXP(~-TLAM #AJAY))
GO TO 20
14 CALL RELINTC(AJAY,C3,FCT)
P=P+C2% (CO-EXFP(=TLAM®AJAY)I®CS)
20 CONTINUE
R=1,-P#C1l/FCT
RETURN
END

SOURCE LIST
SUBROUTINE CUE(C)
DIMENSION X(1U0),NO(10),TIME(10),FRATE(10),ELCOT(10),SPCST(10),
1SWCST(10),K3¢ST(1n)
"OIMENSION KELSw(10)
COMMON X,NU,TIME,FRATE,RELSW,ELCST,SPCST,SwiS!,RSCST,NEL, TLAM, S, N
1,NO
C=1,
CN N
NN NO-1
[FC NN D)15,15,5
5 DO 10 I=1,Nn
L = C#FLOAT(D)
CN = CN#FLOAT(=1[)
10 CONTINUE
‘15 ¢ = CN/C
RETURN
END

na

SUBROUTINE RELINT(AJAY, TERM,FCT) _
DIMENSTON X(10),NO(10),TIME(10),FRATE(L10),ELCST(10),5PCST(10),
1SWCST(10),RS3CST(1n)

DIMENSION KELSW(1p)

COMMON X ,NU,TIME,FRATE,RELSW,ELCST,SPCST,SWCS !, RSCST,NEL,TLAY,MS,N

1,NO
FcT =1,
K = M§S - 1

lF(AJAY'.L.)b)l;S
1 TERM=(TLAM#=#(K+1))/FLOAT(K+1)
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o 2 1=1,K
2 FCT = FCT = FLUAT( 1 )
RETUKN
5> IF( K )8,6,38
6 TERM = (EXPU(AJYAY=1,)#TLAM) - 1,.)/CAJAY-1,)
RETURN '
B 4 =1
[ERM = ((AJAY-1,)aTLAM)##=K
[1=K-1
i2=0
[3=-1
DO 10 1=11,12,]13
J=J+1
FCT=FCT#FLOAT(I+1)
TERM=TERM+ (FCT#((AJAY=1 )aTaM)#e)e( (=1, )##(MOD(J,2)+1))
10 CONTINUE
TEKM=(TERM#EXF((AJAY=1,)#TLAM)+((=1,)2u(K+1))#FC I)/(AJAY ~1,)##MS
20 RETURN
END

SUBROUTINE MODEL(J,R,REL,IN,RB,CB,)
UIMENSION RCiu),In(10,3)
UDIMENSION X(106),NQ(L10)» TIME(LO),FRATE(10),ELCOT(10),SPCST(10),
1SWEST(10) ,RSCST(1n)
UIMENSION KELSw(1p)
COMMUN X,N(,TIME,FRATE,RELSW,ELCST,SPCST,SWCST,RSCST,NEL, TLAM,MS,N
1,N0O
tg = 0.0
DO 200 I=1,rtl
CB=CB+FLOATCINCI,1))#ELCST(I)+FLOATCINCT,3) )=
1(RSCaT(I)+SW§PT(I))+FLOAT(IN(I,Z))#SPCST(I)
20U CONTINUE
DO 190 I=1,NkEL
X(I) = R(I)
100 CONTINUE
X(J) = REL
RB = X(1)#Xx(2)ax(g)#(1,=X(4)=-X(3)4+2,8X(3)1#X(4))+X(1)#X(3)uX(4)®
1 (1= X(8) =X (24X (2)#X(4) 2 (1.-X(3)#X(5)) + X(3)#X(5)
30U CONTINUE
RE TURN
END
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